融合自注意力机制的PSO-LSTM地下管线沉降预测方法
CSTR:
作者:
作者单位:

(1.长沙市轨道交通集团有限公司,湖南 长沙 410021;2.湖南城市学院 城市地下基础设施结构安全与防灾湖南省工程研究中心,湖南 益阳 413002;3.湖南城市学院 土木工程学院,湖南 益阳 413002)

作者简介:

通讯作者:

蒋磊(1986—),男,高级工程师,主要从事城市轨道交通与隧道工程方面的研究工作。E-mail:724514248@qq.com

中图分类号:

U45

基金项目:

国家自然科学基金项目(51678226);湖南省自然科学基金项目(2023JJ30110);湖南省教育厅科学研究重点项目(23A0568)


A PSO-LSTM method integrated with self-attention mechanism for prediction of underground pipeline settlement
Author:
Affiliation:

(1. Changsha Metro Group Co., Ltd., Changsha 410021, China; 2. Hunan Engineering Research Center of Structural Safety and Disaster Prevention for Urban Underground Infrastructure, Hunan City University, Yiyang 413002, China; 3. College of Civil Engineering, Hunan City University, Yiyang 413002, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    【目的】地下管线沉降是矩形顶管隧道施工过程中的关键参数。传统的预测方法往往依赖于经验模型和统计分析,难以准确地预测复杂隧道结构的沉降。【方法】针对这一挑战,提出一种融合自注意力(Self-Attention)机制基于粒子群优化(particle swarm optimization,PSO)算法及长短期记忆(long short-term memory,LSTM)神经网络的地下管线沉降预测方法。首先,引入自注意力机制,通过自适应地为不同时间步赋予不同的权重,增强LSTM神经网络对关键时间节点的关注,捕捉时间序列中的重要信息。然后,利用PSO算法优化LSTM神经网络的超参数,确保LSTM神经网络能够以最优的结构处理输入数据,提取输入数据中的时序特征,捕捉长短期依赖关系。最后,通过LSTM神经网络的全连接层输出地表沉降的预测值。为了验证该算法的优越性和鲁棒性,利用长沙市轨道交通6号线工程的实测数据构建地下管线沉降数据集,针对LSTM、LSTM-Self-Attention及PSO-LSTM-Self-Attention模型对不同位置顶管沉降的预测情况展开对比分析。【结果】融合自注意力机制的PSO-LSTM地下管线沉降预测模型的均方误差、均方根误差、平均绝对误差及决定系数四个指标均为最优。【结论】融合自注意力机制的PSO-LSTM模型具有更优的地下管线沉降预测性能。

    Abstract:

    [Purposes] Underground pipeline settlement is a key parameter during the construction of rectangular pipe jacking tunnels. Traditional prediction methods mostly rely on empirical models and statistical analysis, which struggle to accurately predict settlement in complex tunnel structures. [Methods] To address this challenge, this paper proposes a Self-Attention mechanism integrated prediction method for underground pipeline settlement based on particle swarm optimization (PSO) and a long short-term memory (LSTM) neural network. First, the Self-Attention mechanism is introduced to adaptively assign different weights to different time steps, which enhances focus of the LSTM neural network on critical time points and is conducive to capturing important information from the time series. Next, the PSO algorithm is used for hyperparameter optimization of the LSTM neural network to ensure that it can process the input data with optimal configuration. The LSTM neural network is responsible for extracting temporal features from the input data and capturing long short-term dependencies. Finally, the model outputs the predicted surface settlement through a fully connected layer of the LSTM neural network. To verify the superiority and robustness of the proposed algorithm, a dataset of underground pipeline settlement was constructed using measured data from the Changsha Metro Line 6 project. The prediction performance of pipe jacking settlement at different tunnel locations was compared using the LSTM,LSTM-Self-Attention,and PSO-LSTM-Self-Attention models. [Findings] The results show that the PSO-LSTM-Self-Attention model outperforms the others in terms of mean squared error, root mean squared error, mean absolute error, and the coefficient of determination. [Conclusions] This study validates that the PSO-LSTM-Self-Attention model exhibits superior performance in predicting underground pipeline settlement.

    参考文献
    相似文献
    引证文献
引用本文

蒋磊,翁晓轩,谭泽,等.融合自注意力机制的PSO-LSTM地下管线沉降预测方法[J].交通科学与工程,2025,41(1):51-59.
JIANG Lei, WENG Xiaoxuan, TAN Ze, et al. A PSO-LSTM method integrated with self-attention mechanism for prediction of underground pipeline settlement[J]. Journal of Transport Science and Engineering,2025,41(1):51-59.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-12
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-26
  • 出版日期:
文章二维码