水下隧道过断层施工稳定性分析
CSTR:
作者:
作者单位:

(1.湖南科技大学 土木工程学院,湖南 湘潭 411201;2.湖南科技大学 材料科学与工程学院,湖南 湘潭 411201)

作者简介:

通讯作者:

安永林(1981—),男,教授,主要从事隧道与地下工程方面的教学与研究工作。E-mail:aylcsu@163.com

中图分类号:

U455.49

基金项目:

湖南省教育厅科学研究项目(22B0516);湖南省学位与研究生教学改革研究项目(2024JGYB199);湖南省自然科学基金项目(2025JJ50295)


Stability analysis of underwater tunnel crossing fault during construction
Author:
Affiliation:

(1. School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; 2. School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    【目的】在隧道开挖过程中,穿越含水断层破碎带与不穿越断层区域两种情况下围岩的稳定性存在显著区别,毛洞围岩和衬砌结构在施工和运营期间的安全状况也明显不同。【方法】为了研究渗流对围岩稳定性的劣化作用,需分析围岩渗流场和洞周围岩开挖二次应力场之间的耦合效应,指出围岩最不利的开挖位置和受力部位。【结果】以长沙市营盘路湘江隧道为例,采用有限元数值软件进行模拟,分析了开挖过程中围岩的渗流场、应力场、位移场和塑性区的变化特征,确定了易发生突涌水灾害的掌子面部位和断层影响范围。【结论】上台阶渗流量显著高于中台阶、下台阶渗流量,最大渗流量出现在掌子面的左右两侧;上台阶前突位移明显大于中台阶、下台阶前突位移,最大前突位移发生在掌子面的中央;在断层区域各部位的沉降均显著大于在正常围岩区域各部位的沉降,以拱顶的表现最为明显;穿越断层区域促使围岩出现更大范围的塑性区,当掌子面推进至断层前方约10 m时,掌子面前方的塑性区与断层区域贯通,并延伸到地表;断层对不同位置的围岩的劣化影响程度不同,强影响区为断层内部和断层前后3 m范围,弱影响区为断层前后20 m范围。

    Abstract:

    [Purposes] Excavating a tunnel crossing a water-bearing fault fracture zone results in significantly different stability of the surrounding rock compared to that in a non-fault area. This difference causes changes in the safety of the surrounding rock of the unlined tunnel and lining structure during construction and operation. [Methods] For further studying the deteriorating effect of seepage on the stability of surrounding rock, it is necessary to analyze the coupling effect between the seepage field of surrounding rock and the secondary stress field of tunnel surrounding rock excavation and point out the most unfavorable excavation position and stress location. [Findings] This paper takes the actual project of Xiangjiang Tunnel on Yingpan Road in Changsha City as an example and uses finite element software for simulation. The study analyzes the change characteristics of the seepage field, stress field, displacement field, and plastic zone of the surrounding rock during excavation and determines the location of the tunnel face that is prone to sudden water inrush disasters and the influence range of the fault. [Conclusions]The research results indicate that the seepage discharge of the upper step is significantly higher than that of the middle and lower steps, and the maximum seepage discharge occurs on the left and right sides of the tunnel face. The displacement of the upper step is significantly greater than that of the middle and lower steps, and the maximum displacement occurs in the center of the tunnel face. The settlement of various parts in the fault zone is significantly greater than that in the normal surrounding rock zone, with the most obvious change being in the arch crown. A larger plastic zone of the surrounding rock is produced when the tunnel crosses the fault zone. When the tunnel face advances to about 10 m in front of the fault, the plastic zone in front of the tunnel face connects with the fault and extends to the surface. The degree of deterioration of surrounding rock at different locations by the fault varies. The strong influence zone includes the interior of the fault and 3 m before and after the fault, while the weak influence zone includes 20 m before and after the fault.

    参考文献
    相似文献
    引证文献
引用本文

李生辉,安永林,谭格宇,等.水下隧道过断层施工稳定性分析[J].交通科学与工程,2025,41(1):60-71.
LI Shenghui, AN Yonglin, TAN Geyu, et al. Stability analysis of underwater tunnel crossing fault during construction[J]. Journal of Transport Science and Engineering,2025,41(1):60-71.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-01
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-26
  • 出版日期:
文章二维码