Adam优化神经网络的连续刚构桥施工线形预测
CSTR:
作者:
作者单位:

(1.长沙理工大学 土木与环境工程学院,湖南 长沙 410114;2.中交一公局第九工程有限公司,广东 广州 511338)

作者简介:

通讯作者:

田仲初(1963—),男, 教授,主要从事大跨桥梁结构分析与施工控制方面的研究工作。E-mail:752885515@qq.com

中图分类号:

U448.23

基金项目:

国家自然科学基金面上项目(51478049)


Construction alignment prediction of continuous rigid frame bridge based on Adam-optimized neural network
Author:
Affiliation:

(1. School of Civil and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China;2. The Ninth Engineering Co., Ltd. of China First Highway Engineering Co., Ltd., Guangzhou 511338, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    【目的】针对现有桥梁施工线形预测方法的不足,提出一种基于自适应矩估计(adaptive moment estimation,Adam)优化反向传播(back propagation,BP)神经网络的连续刚构桥线形预测方法。【方法】以小乌江大桥为研究对象,通过正交试验确定了桥梁施工线形的敏感参数为混凝土容重、混凝土弹性模量、张拉控制应力和温度。以均方根误差、平均绝对误差、决定系数和运算耗时为评价指标,在初始学习率相同的条件下,对梯度下降、梯度下降最小化、均方根传播和Adam四种优化算法的性能进行对比。【结果】基于Adam优化算法的BP神经网络收敛时的运算耗时为0.518 s,相较于其他三种优化算法,Adam优化算法下BP神经网络具有更快的收敛速度和更高的拟合精度。【结论】所提方法可较准确地预测连续刚构桥施工过程的线形。

    Abstract:

    [Purposes]Given the shortcomings of existing construction alignment prediction methods for bridges, a alignment prediction method for continuous rigid frame bridge based on back propagation (BP) neural network optimized by adaptive moment estimation (Adam) was proposed. [Methods]With the project of Xiaowujiang Bridge taken as the research object, the sensitive parameters of bridge construction alignment were determined through the orthogonal test, namely concrete bulk density, concrete elastic modulus, tension control stress, and temperature. With the root mean square error, average absolute error, coefficient of determination, and operation time taken as evaluation indexes, under the same incipient learning rate, the four optimization algorithms of gradient descent, minimum gradient descent, root mean square propagation, and Adam were compared. [Findings]The results indicate that the operation time for the BP neural network optimized by Adam when it finishes convergence is 0.518 s and that the Adam algorithm has a faster convergence speed and a higher fitting accuracy than the other three optimization algorithms. [Conclusions] The proposed method can predict the alignment of rigid frame bridge construction in a relatively accurate way.

    参考文献
    相似文献
    引证文献
引用本文

覃聪,田仲初,马连峰,等. Adam优化神经网络的连续刚构桥施工线形预测[J].交通科学与工程,2025,41(1):98-104,139.
QIN Cong, TIAN Zhongchu, MA Lianfeng, et al. Construction alignment prediction of continuous rigid frame bridge based on Adam-optimized neural network[J]. Journal of Transport Science and Engineering,2025,41(1):98-104,139.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-09-06
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-26
  • 出版日期:
文章二维码