桥梁监测信号异常值剔除与去噪方法研究
CSTR:
作者:
作者单位:

(1. 湖南轨道技术应用研究中心有限公司,湖南 长沙 410000;2. 长沙理工大学 土木与环境工程学院,湖南 长沙 410114;3. 凤凰磁浮文化旅游有限责任公司,湖南 湘西土家族苗族自治州 416007)

作者简介:

通讯作者:

蒋田勇(1978—),男,教授,主要从事桥梁结构智能监测方面的研究工作。E-mail:tianyongjiang@csust.edu.cn

中图分类号:

U448

基金项目:

国家自然科学基金项目(52378123);湖南省自然科学基金项目(2025JJ50242)


Outlier removal and denoising methods for bridge monitoring signals
Author:
Affiliation:

(1. Hunan Rail Transit Technology Application Research Center Co., Ltd., Changsha 410000, China;2. School of Civil and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China;3. Fenghuang Maglev Cultural Tourism Co., Ltd., Xiangxi Tujia and Miao Autonomous Prefecture 416007, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    【目的】针对桥梁监测信号中的异常值识别和环境噪声干扰问题,提出了基于最小二乘法改进箱型图异常值的识别算法和快速集合经验模态分解法联合小波阈值的去噪方法。【方法】首先,采用改进后的箱型图算法对异常值进行识别和替换。然后,利用快速集合经验模态分解法对异常值处理后的桥梁监测信号进行分解,计算分解分量的方差贡献率,去除方差贡献率较小的模态分量,并使用小波阈值法处理剩余信号。最后,重构信号得到去噪后的信号。【结果】对模拟信号和实测信号进行分析可以发现:基于最小二乘法改进后的箱型图算法在异常数据上的召回率达到了100%。同时快速集合经验模态分解联合小波阈值的去噪方法可有效地滤除噪声信号。分析含有不同噪声的模拟信号可知:相比于小波阈值、快速集合经验模态分解法以及经验模态分解法联合小波阈值的方法,使用本文方法去噪后的监测数据均方根误差最小。实测信号的处理结果显示:本文方法去噪后的信号平滑度指标值以及噪声模均比其他方法的好。【结论】基于最小二乘法改进的箱型图算法和快速集合经验模态分解法联合小波阈值的去噪方法能够有效地解决桥梁监测信号中的异常值识别和噪声问题,研究成果可为桥梁信号的预处理提供参考。

    Abstract:

    [Purposes] To address the issues of outlier detection and environmental noise interference in bridge monitoring signals, this study proposes an outlier detection algorithm based on a least squares-improved boxplot and a denoising method combining fast ensemble empirical mode decomposition (FEEMD) with wavelet thresholding. [Methods] First, an improved boxplot algorithm was employed to identify and replace outliers. Subsequently, the FEEMD method was utilized to decompose the bridge monitoring signals after outlier processing. The variance contribution rates of the decomposed components were calculated, and the modal components with small variance contribution rates were removed. The remaining signals were subjected to wavelet thresholding. Finally, the signals were reconstructed to obtain the denoised signals. [Findings] Analysis of both simulated and actual measured signals reveals that the boxplot algorithm improved upon the least squares method achieves a recall rate of 100% for identifying anomalous data. Meanwhile, the denoising method combining the fast ensemble empirical mode decomposition with wavelet thresholding can effectively filter out interfering noise signals. By analyzing simulated signals contaminated with various types of noise, it is found that compared to methods such as wavelet thresholding, FEEMD alone, and the combination of empirical mode decomposition (EMD) with wavelet thresholding, the monitoring data denoised using the proposed method exhibits a minimum root mean square error. Results from processing actual measured signals demonstrate that the smoothness index and noise mode after denoising are superior to those obtained from other schemes. [Conclusions] The improved boxplot algorithm based on the least squares method and the denoising method combining FEEMD with wavelet thresholding can effectively address the issues of outlier recognition and noise in bridge monitoring signals. The research findings can serve as a reference for the preprocessing of bridge signals.

    参考文献
    相似文献
    引证文献
引用本文

陈峰,喻晨宇,蒋田勇,等.桥梁监测信号异常值剔除与去噪方法研究[J].交通科学与工程,2025,41(1):129-139.
CHEN Feng, YU Chenyu, JIANG Tianyong, et al. Outlier removal and denoising methods for bridge monitoring signals[J]. Journal of Transport Science and Engineering,2025,41(1):129-139.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-24
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-26
  • 出版日期:
文章二维码