基于截断高斯分布的异质自行车离散模型
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

U491.2

基金项目:

国家自然科学基金资助项目(61364019)


Discrete model of hybrid bicycle based on truncated gaussian distribution
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了研究城市自行车的离散规律,为城市自行车信号协调控制、自行车微观交通仿真和交通流预测提供 理论支持,考虑城市自行车流的异质性和行程时间的分布特征,利用截断高斯分布拟合异质自行车行程时间,以 昆明市环城北路实测数据为基础,对行程时间服从截断高斯分布的城市异质自行车离散特性展开了研究。分析了 自行车离开上游交叉口之后在路段上的离散规律和到达下游某断面的流率分布特征。将服从截断高斯分布的自行 车流离散模型和 Robertson 模型的预测结果与实测数据进行了对比。研究结果表明:自行车行程时间服从截断高 斯分布且呈双峰型,该模型能够更好地描述异质交通流条件下的自行车离散规律。与 Robertson 模型相比,该模 型的平均预测均方误差减少了 22.53%。

    Abstract:

    To describe the law of platoon dispersion under the condition of heterogeneous bicycle traffic flow adequately, theoretical support is provided for urban bicycle signal coordination control,bicycle microscopic traffic simulation and traffic flow prediction. The characteristics of cycle’s travel time distribution in heterogeneous bicycle traffic flow is considered. The truncated Gaussian distribution is used to fit vehicle’s travel time distribution. Based on this, the investigated dispersion characteristics of urban heterogeneous cycle’s travel time is subject to truncated gaussian distribution. Later, the relationship between the arrival flow rate of the downstream intersection and the depart flow rate of the upstream intersection is analyzed using the proposed model by field collected data, with comparison to those of Robertson model and the actual data. The results show that the proposed model can better describe the law of dispersion in heterogeneous bicycle traffic flow, and the mean squared error of prediction is reduced by about 22.53%, compared with Robertson model.

    参考文献
    相似文献
    引证文献
引用本文

尹德鹏 ,成卫 ,雷建明 .基于截断高斯分布的异质自行车离散模型[J].交通科学与工程,2020,36(1):104-110.
YIN De-peng, CHENG Wei, LEI Jian-ming. Discrete model of hybrid bicycle based on truncated gaussian distribution[J]. Journal of Transport Science and Engineering,2020,36(1):104-110.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-06-09
  • 出版日期:
文章二维码