基于深度学习的短时交通流预测模型
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

U491.14

基金项目:

国家自然科学基金(51078044,51338002)


Prediction model of short-term traffic flow based on CNN-GRU deep learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有交通流短时预测模型在描述交通流时空特征能力较弱的问题,提出了一种卷积神经网络和门控 循环单元神经网络相结合的深度神经网络预测模型。该模型利用卷积神经网络提取短时交通流数据的空间特征, 并将结果输入到门控循环单元神经网络中,挖掘短时交通流数据的时间特征。以加州交通局绩效评估系统的交通 流数据为例,对该模型进行训练,验证该模型的准确性。试验结果表明:与现有的模型相比,该模型具有更好的 预测性能,其平均绝对百分误差显著减少,可为交通管理与控制提供有效依据。

    Abstract:

    To improve the prediction performance of temporal-spatial characteristics by the existing short-term traffic flow prediction model, a deep neural network prediction model combining convolutional neural network (CNN) and gated recurrent unit (GRU) neural network is proposed. In the model, the CNN is firstly used to extract the spatial characteristics of short-term traffic flow data, and then the results are input into the GRU to mine the temporal features. Taking the traffic flow data in the California Department of Transportation’s performance evaluation system as an example, the model is trained to verify its accuracy. The results show that compared with existing models, the proposed prediction model has better prediction performance. The average absolute percentage error is significantly reduced, which can provide an effective basis for traffic management and control.

    参考文献
    相似文献
    引证文献
引用本文

卢生巧,黄中祥.基于深度学习的短时交通流预测模型[J].交通科学与工程,2020,36(3):74-80.
LU Sheng-qiao, HUANG Zhong-xiang. Prediction model of short-term traffic flow based on CNN-GRU deep learning[J]. Journal of Transport Science and Engineering,2020,36(3):74-80.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-06-09
  • 出版日期:
文章二维码