基于长短期记忆网络的断面交通数据异常处理
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

U491

基金项目:

国家自然科学基金(61364019)


Abnormal detection and correction of section traffic data based on long short-term memory network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对基于统计模型的传统算法仅优化局部数据的问题。建立了基于长短期记忆网络深度学习模型的异常 数据处理算法和基于 Tensorflow 框架搭建了神经网络模型。通过进行训练模型,获得备选数据集和校验数据集。 通过样本标签对比,判定异常点,并进行数据替换和更新标准样本。为检验该算法的有效性,使用昆汕高速公路 K2077 断面交通数据,进行验算和分析。研究结果表明:长短期记忆网络模型可快速处理交通时序原始数据,并 进行检测修正算法,优化了数据质量,弥补了传统算法的局限性。工作窗口的建立,精简了算法流程,提升了数 据修正的精度

    Abstract:

    In order to solve the contradiction that only the local data can be optimized using traditional algorithms, an abnormal data processing algorithm based on long short-term memory network (LSTM) deep learning model proposed, and then the neural network model is built based on tensor flow framework, so as to obtain alternative data sets and calibration data sets. Through the comparison of sample labels, abnormal points are determined, the data is replaced and the standard samples are updated. To verify the effectiveness of the algorithm, the K2077 section traffic data of Kunming-Shantou expressway was used for checking and analysis. The results show that the LSTM model can quickly process the original traffic time series data and detect and correct algorithm. It can also optimize the data quality and makes up for the limitations of traditional algorithms. The establishment of the working window simplifies the algorithm flow and improves the accuracy of data correction.

    参考文献
    相似文献
    引证文献
引用本文

张灵 ,康晋滔 ,成卫 .基于长短期记忆网络的断面交通数据异常处理[J].交通科学与工程,2020,36(3):81-87.
ZHANG Ling, KANG Jin-tao, CHENG Wei. Abnormal detection and correction of section traffic data based on long short-term memory network[J]. Journal of Transport Science and Engineering,2020,36(3):81-87.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-06-09
  • 出版日期:
文章二维码