双目标函数约束下的停车场分配优化模型
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

U491

基金项目:


Optimization model of parking lot allocation under the constraint of dual objective function
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对找不到停车位而造成停车难的问题。通过出行者选择停车场时的影响因素,建立了双目标函数约束 的停车场分配模型,并基于灰熵理论求解停车场选择集合。根据算例验证停车诱导系统的最优停车场分配方案。 研究结果表明:模型分配方案要明显优于出行者自身选择的方案,减少了停车行为对区域交通的影响,降低了出 行者及系统整体的停车成本。当停车场容量存在限制时,模型分配方案的各项属性均要高于无容量限制下的停车 场分配方案,且部分车辆的停车场选择并非最优。该模型能够在兼顾出行者利益的情况下,获得系统最优下的停 车场分配方案,为停车场管理模式提供了新的思路。

    Abstract:

    In order to study the optimal parking lot allocation model under the intelligent parking guidance system, parking lot allocation model was established under the constraints of dual-objective function by considering the factors that influence the travelers when choosing a parking lot. The parking lot selection sets were obtained based on grey entropy theory. The optimal allocation scheme was verified according to the result of an example. Results indicate that the allocation scheme obtained by the model not only reduces the impacts of parking behavior on regional traffic but also lowers the parking cost of traveler and system. It is obviously superior to the traveler’s choice. When the capacity of parting lot is limited, all attributes of the parking lot allocation from the model are higher than that without parking lot capacity restriction. The parking lot selection of some vehicles is also not optimal. This indicates that the model can obtain the optimal parking lot allocation considering the interests of the travelers and provide a new way for parking lot management.

    参考文献
    相似文献
    引证文献
引用本文

王韩麒.双目标函数约束下的停车场分配优化模型[J].交通科学与工程,2020,36(3):101-107.
WANG Han-qi. Optimization model of parking lot allocation under the constraint of dual objective function[J]. Journal of Transport Science and Engineering,2020,36(3):101-107.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-06-09
  • 出版日期:
文章二维码