精准管控下的城市交通拥堵状态研判与建模
DOI:
CSTR:
作者:
作者单位:

作者简介:

张可可(1990—),女,湖南省交通规划勘察设计院有限公司工程师

通讯作者:

中图分类号:

U491.2

基金项目:


Towards smart management and control:a novel approach to identify traffic congestion states in urban areas
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对治理城市交通拥堵难题,本研究提出了一种趋势预测、状态评价及精细判定的综合评判方法。该方法以交通流量、平均速度和时间延误为判别因素,建立了基于模糊C-均值聚类算法的动态交通状态评价标准;基于支持向量机构建交通态势预测模型,利用聚类模型进行状态评价,判定需要采取交通管制的路段;采用数据包络法, 确定各路段所需要采取措施的优先级。本研究以长沙市部分路段为实例,验证了该方法的合理性和有效性,为城市交通精细化管控提供了技术参考和决策支持。

    Abstract:

    To solve the problems caused by traffic congestions in urban areas,this study proposed a comprehensive method to evaluate and predict traffic states.Based on three discriminating factors of traffic flow,average speed and travel time delay,a dynamic traffic state discrimination model using the fuzzy C-means clustering algorithm was established first to determine the states of all samples.Then, the traffic situation prediction model is constructed based on the support vector machine model,and the clustering model is used to evaluate the traffic states and determine the road segment that needs to be traffic controlled.Finally,the data envelopment method was developed to identify the priority of each road section for more precise traffic control.Based on the empirical data collected in Changsha,China, this method was validated,the research results could provide substantial supports for decision makers to take proactive measures to release traffic congestions in urban areas.

    参考文献
    相似文献
    引证文献
引用本文

张可可,韩春阳,周京,等.精准管控下的城市交通拥堵状态研判与建模[J].交通科学与工程,2022,38(3):113-120.
ZHANG Keke, HAN Chunyang, ZHOU Jing, et al. Towards smart management and control:a novel approach to identify traffic congestion states in urban areas[J]. Journal of Transport Science and Engineering,2022,38(3):113-120.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-01-05
  • 出版日期:
文章二维码