超声智能识别CFRP-钢界面缺陷研究
作者:
作者单位:

(长沙理工大学 土木工程学院,湖南 长沙 410114)

作者简介:

陈卓异(1985—),男,长沙理工大学副教授,博士后。

通讯作者:

中图分类号:

TU375.4

基金项目:

国家自然科学基金项目(51708047,51778069);湖南省自然科学基金项目(2019JJ50670);湖南省教育厅优青项目(19B013)


Research on ultrasonic intelligent recognition of CFRP-steel interface defects
Author:
Affiliation:

(School of Civil Engineering,Changsha University of Science & Technology,Changsha 410114,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    土木工程常采用碳纤维增强复合材料(CFRP)对钢结构进行加固,但加固后产生的缺陷会影响CFRP-钢结构的力学性能。因此,如何快速、准确地检测与识别CFRP-钢结构中存在的各种缺陷具有重大的实际工程意义。在对比傅里叶快速变换和小波包分析法后,该研究采用小波包分析方法处理钢结构试件的超声A扫信号。该方法能更好地提取回波信号特征,有效识别工程中最常见的夹杂、分层与钢板开裂3种缺陷。先对超声信号进行小波包分析;再提取近似系数节点与细节系数节点的8个特征值来构建特征向量;然后,利用所得特征向量分别采用梯度下降法、准牛顿法与共轭梯度法3种算法训练神经网络;最后,利用这些神经网络对3种缺陷进行智能识别并优选出识别精度最高的神经网络。研究结果表明:通过共轭梯度算法训练的BP神经网络模型的识别精度最高,可达93.75%。

    Abstract:

    Carbon fibre reinforced plastics (CFRP) are often used in civil engineering to strengthen steel structures,but various defects can affect the mechanical properties of CFRP-steel structures. Therefore,it is of great research significance to detect and identify various defects in CFRP-steel structures quickly and accurately. This study uses wavelet packet analysis to process the ultrasonic A-scan signals of steel specimens to identify the three most common types of defects in engineering,including,delamination and the steel plate cracking. The eight eigenvalues of the approximate coefficients and detail coefficients were extracted to construct the feature vectors;then,three algorithms,namely gradient descent optimization,quasi-Newton method and conjugate gradient descent optimization,were used to train the neural networks;finally,these neural networks were used to intelligently identify the three defects and the best neural network was selected. The results showed that the BP neural network model trained by the conjugate gradient algorithm has the best recognition accuracy of 93.75%.

    参考文献
    相似文献
    引证文献
引用本文

陈卓异,谭胜,李传习,等.超声智能识别CFRP-钢界面缺陷研究[J].交通科学与工程,2023,39(2):71-79.
CHEN Zhuoyi, TAN Sheng, LI Chuanxi, et al. Research on ultrasonic intelligent recognition of CFRP-steel interface defects[J]. Journal of Transport Science and Engineering,2023,39(2):71-79.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-09-07
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-07-14
  • 出版日期:
文章二维码