2025年4月3日    10:58    星期四
超声智能识别CFRP-钢界面缺陷研究
CSTR:
作者:
作者单位:

(长沙理工大学 土木工程学院,湖南 长沙 410114)

作者简介:

陈卓异(1985—),男,长沙理工大学副教授,博士后。

中图分类号:

TU375.4

基金项目:

国家自然科学基金项目(51708047,51778069);湖南省自然科学基金项目(2019JJ50670);湖南省教育厅优青项目(19B013)


Research on ultrasonic intelligent recognition of CFRP-steel interface defects
Author:
Affiliation:

(School of Civil Engineering,Changsha University of Science & Technology,Changsha 410114,China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • | | | |
  • 文章评论
    摘要:

    土木工程常采用碳纤维增强复合材料(CFRP)对钢结构进行加固,但加固后产生的缺陷会影响CFRP-钢结构的力学性能。因此,如何快速、准确地检测与识别CFRP-钢结构中存在的各种缺陷具有重大的实际工程意义。在对比傅里叶快速变换和小波包分析法后,该研究采用小波包分析方法处理钢结构试件的超声A扫信号。该方法能更好地提取回波信号特征,有效识别工程中最常见的夹杂、分层与钢板开裂3种缺陷。先对超声信号进行小波包分析;再提取近似系数节点与细节系数节点的8个特征值来构建特征向量;然后,利用所得特征向量分别采用梯度下降法、准牛顿法与共轭梯度法3种算法训练神经网络;最后,利用这些神经网络对3种缺陷进行智能识别并优选出识别精度最高的神经网络。研究结果表明:通过共轭梯度算法训练的BP神经网络模型的识别精度最高,可达93.75%。

    Abstract:

    Carbon fibre reinforced plastics (CFRP) are often used in civil engineering to strengthen steel structures,but various defects can affect the mechanical properties of CFRP-steel structures. Therefore,it is of great research significance to detect and identify various defects in CFRP-steel structures quickly and accurately. This study uses wavelet packet analysis to process the ultrasonic A-scan signals of steel specimens to identify the three most common types of defects in engineering,including,delamination and the steel plate cracking. The eight eigenvalues of the approximate coefficients and detail coefficients were extracted to construct the feature vectors;then,three algorithms,namely gradient descent optimization,quasi-Newton method and conjugate gradient descent optimization,were used to train the neural networks;finally,these neural networks were used to intelligently identify the three defects and the best neural network was selected. The results showed that the BP neural network model trained by the conjugate gradient algorithm has the best recognition accuracy of 93.75%.

    参考文献
    [1] 陈卓异,李传习,柯璐,等. 某悬索桥钢箱梁疲劳病害及处治方法研究[J]. 土木工程学报,2017,50(3):91-100.CHEN Zhuoyi,LI Chuanxi,KE Lu,et al. Study on fatigue damages and retrofit methods of steel box girder in a suspension bridge[J]. China Civil Engineering Journal,2017,50(3):91-100.
    [2] 程晓东. 异形拱桥病害分析及吊杆更换方法研究[J]. 公路与汽运,2021(5):128-132.CHENG Xiaodong. Disease analysis of special-shaped arch bridge and research on replacement method of suspenders[J]. Highways & Automotive Applications,2021(5):128-132.
    [3] 陈卓异,彭彦泽,李传习,等.高温下双搭接钢-CFRP板胶黏界面力学性能试验[J].复合材料学报,2021,38(2):449-460.CHEN Zhuoyi,PENG Yanze,LI Chuanxi,et al. Experimental study for the adhesive interface mechanical properties of double lapped steel-CFRP plate at high temperature[J]. Acta Materiae Compositae Sinica,2021,38(2):449-460.
    [4] 王恺,罗南海. CFRP板/钢界面黏结性能水浴试验研究[J]. 中外公路,2021,41(4):345-349.WANG Kai,LUO Nanhai. Experimental study on bonding properties of CFRP plate/steel interface in water bath[J]. Journal of China & Foreign Highway,2021,41(4):345-349.
    [5] 魏莹莹,安庆龙,蔡晓江,等. 碳纤维复合材料超声扫描分层检测及评价方法[J]. 航空学报,2016,37(11):3512-3519.WEI Yingying,AN Qinglong,CAI Xiaojiang,et al. CFRP ultrasonic scan delamination detection and evaluation method[J]. Acta Aeronautica et Astronautica Sinica,2016,37(11):3512-3519.
    [6] 徐丽,张幸红,韩杰才. 航空航天复合材料无损检测研究现状[J]. 材料导报,2005,19(8):79-82,95.XU Li,ZHANG Xinghong,HAN Jiecai. Review of NDE of composite materials in aerospace fields[J]. Materials Review,2005,19(8):79-82,95.
    [7] 马保全,周正干. 航空航天复合材料结构非接触无损检测技术的进展及发展趋势[J]. 航空学报,2014,35(7):1787-1803.MA Baoquan,ZHOU Zhenggan. Progress and development trends of composite structure evaluation using noncontact nondestructive testing techniques in aviation and aerospace industries[J]. Acta Aeronautica et Astronautica Sinica,2014,35(7):1787-1803.
    [8] 靳世久,杨晓霞,陈世利,等. 超声相控阵检测技术的发展及应用[J]. 电子测量与仪器学报,2014,28(9):925-934. JIN Shijiu,YANG Xiaoxia,CHEN Shili,et al. Development and application of ultrasonic phased array inspection technology[J]. Journal of Electronic Measurement and Instrumentation,2014,28(9):925-934.
    [9] 孙芳,曾周末,靳世久,等. 碳纤维复合材料缺陷的小波包分析[J]. 计算机工程与应用,2012,48(13):1-4,21.SUN Fang,ZENG Zhoumo,JIN Shijiu,et al. Analysis of carbon fiber composite defects based on wavelet packet transform[J]. Computer Engineering and Applications,2012,48(13):1-4,21.
    [10] 杨琳瑜,于润桥,黄昌光,等. 基于小波包变换的复合材料超声波检测信号特征提取[J]. 应用声学,2007,26(3):176-180.YANG Linyu,YU Runqiao,HUANG Changguang,et al. Feature extraction from carbon fiber composites ultrasonic signals based on wavelet packet transform[J]. Applied Acoustics,2007,26(3):176-180.
    [11] 张德海,朱浮声. 结构损伤智能诊断研究进展[J]. 力学与实践,2003,25(4):1-6.ZHANG Dehai,ZHU Fusheng. The advances of research on structural damage intelligent diagnosis[J]. Mechanics and Engineering,2003,25(4):1-6.
    [12] 李健,郭薇,杨晓霞,等. 超声相控阵检测CFRP缺陷识别方法[J]. 天津大学学报(自然科学与工程技术版),2015,48(8):750-756.LI Jian,GUO Wei,YANG Xiaoxia,et al. A flaw classification method for ultrasonic phased array inspection of CFRP[J]. Journal of Tianjin University (Science and Technology),2015,48(8):750-756.
    [13] 姜增国,瞿伟廉,闵志华. 基于小波包分析的结构损伤定位方法[J]. 武汉理工大学学报,2006,28(11):94-97,124.JIANG Zengguo,QU Weilian,MIN Zhihua. Damage localization of structures by wavelet packet analysis[J]. Journal of Wuhan University of Technology,2006,28(11):94-97,124.
    [14] 袁慎芳,陶宝祺,朱晓荣,等. 应用小波分析及主动监测技术的复合材料损伤监测[J]. 材料工程,2001,29(2):43-46.YUAN Shenfang,TAO Baoqi,ZHU Xiaorong,et al. Damage self diagnose of composite material using active monitoring technology and wavelet analysis method[J]. Journal of Materials Engineering,2001,29(2):43-46.
    [15] 冉志红,李乔. 小波变换在结构损伤识别特征提取中的应用[J]. 振动与冲击,2007,26(7):118-121,185.RAN Zhihong,LI Qiao. Application of wavelet transformation in feature extraction for structure damage identification[J]. Journal of Vibration and Shock,2007,26(7):118-121,185.
    [16] 董晓马,张为公. 小波分析技术在复合材料损伤检测中的应用[J]. 仪器仪表学报,2004,25(S2):489-491.DONG Xiaoma,ZHANG Weigong. Application of wavelet analysis technology for composite materials damage detection[J]. Chinese Journal of Scientific Instrument,2004,25(S2):489-491.
    [17] 吴凡, 吴攀, 彭晖, 等. 端部嵌贴CFRP加固混凝土结构有限元分析[J]. 交通科学与工程, 2022, 38(4): 109-115.WU Fan, WU Pan, PENG Hui, et al. Finite element analysis of concrete structure reinforced by terminal embedded the CFRP strips[J]. Journal of Transport Science and Engineering, 2022, 38(4): 109-115.
    [18] 万振凯,王占刚. 基于神经网络的复合材料缺陷超声波检测研究[J]. 纺织学报,2010,31(2):54-59.WAN Zhenkai,WANG Zhangang. Research on flaw detection for composite material using ultrasonic testing based on neural network[J]. Journal of Textile Research,2010,31(2):54-59.
    [19] 张燕. 基于模糊神经网络的复合材料损伤主动监测技术研究[D]. 南京:南京航空航天大学,2008.ZHANG Yan. Research on damage detection for composite material based on fuzzy neural network[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2008.
    [20] 杨琳瑜,于润桥,卢超,等. 基于BP神经网络的复合材料超声波检测缺陷类型识别[J]. 无损检测,2007,29(8):450-452,460.YANG Linyu,YU Runqiao,LU Chao,et al. Carbon fiber composites defect recognition based on BP neural network in ultrasonic testing[J]. Nondestructive Testing Technologying,2007,29(8):450-452,460.
    [21] 樊振宇. BP神经网络模型与学习算法[J]. 软件导刊,2011,10(7):66-68.FAN Zhenyu. BP neural network model and learning algorithm[J]. Soft Ware Guide,2011,10(7):66-68.
    [22] 张冬雨,刘小方,杨剑,等. 基于小波包变换的复合材料分层缺陷信号特征分析[J]. 兵工自动化,2009,28(11):56-58,68.ZHANG Dongyu,LIU Xiaofang,YANG Jian,et al. Signal characteristic analysis of composite delamination defects based on wavelet packet transform[J]. Ordnance Industry Automation,2009,28(11):56-58,68.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈卓异,谭胜,李传习,等.超声智能识别CFRP-钢界面缺陷研究[J].交通科学与工程,2023,39(2):71-79.
CHEN Zhuoyi, TAN Sheng, LI Chuanxi, et al. Research on ultrasonic intelligent recognition of CFRP-steel interface defects[J]. Journal of Transport Science and Engineering,2023,39(2):71-79.

复制
分享
文章指标
  • 点击次数:74
  • 下载次数: 562
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-09-07
  • 在线发布日期: 2023-07-14
文章二维码