基于MSR算法的公路隧道围岩分级方法
CSTR:
作者:
作者单位:

(长沙理工大学 土木工程学院,湖南 长沙 410114)

作者简介:

柳厚祥(1965—),男,长沙理工大学教授,博士。

通讯作者:

中图分类号:

U451.2

基金项目:

湖南省水利科技项目(XSKJ2019081-39);湖南省教育厅科学研究重点项目(19A025);土木工程优势特色重点学科创新性基金资助项目(17ZDXK01)


Classification method for surrounding rock of highway tunnels based on MSR algorithm
Author:
Affiliation:

(School of Civil Engineering,Changsha University of Science & Technology,Changsha 410114,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    隧道围岩分级是隧道设计与施工的基础,直接影响隧道安全与运行。为实现对隧道围岩进行快速、准确地分级,基于机器学习中softmax回归线性分类模型,构建多分类softmax回归分级方法(MSR)。首先,综合考虑岩石坚硬程度、岩体完整程度、结构面产状、地下水状况、节理风化状况及初始地应力状态6项分级指标,并对其进行量化;其次,采用argmax函数作为决策函数,建立多分类器;然后,给定专家修正训练样本,利用python语言编写程序,学习最优判别函数,同时比较不同学习率下模型的精度;最后,导入测试集数据,经过模型自动演算,得出合理的围岩分级结果。结合那丘隧道BQ法对围岩进行分级。研究结果表明:① 该算法具有可行性和较高的准确率,证实了将机器学习应用到隧道工程中可以提高工程施工效率;② 与二分类器相比,多分类器能更好地解决围岩分级问题;③ 当学习率为0.01时,模型的分类性能最佳。

    Abstract:

    The classification of tunnel surrounding rock is the basis of tunnel design and construction, which directly affects the safety and operation of the tunnel. In order to realize the rapid and accurate classification of tunnel surrounding rock, a multi-classification softmax regression classification method (MSR) was established based on the softmax regression linear classification model in machine learning. First, the six classification indexes, including rock hardness, rock mass integrity, discontinuity plane occurrence, groundwater condition, joint weathering condition, and initial in-situ stress state, are comprehensively considered and quantified. Second, the argmax function is used as the decision function to establish a multi-classifier. Then, the training samples were corrected by experts and the program is written in Python language to learn the optimal discriminant function. Meanwhile, the accuracy of the model under different learning rates is compared. Finally, the test set data is imported, and the model is automatically calculated to obtain a reasonable classification result of the surrounding rock. Combined with the surrounding rock classification of the Naqiu Tunnel BQ method, the research results show that:① This algorithm is feasible and has high accuracy, which proves that applying machine learning to tunnel engineering can improve the construction efficiency; ② Compared with the binary classifier, multi-classifiers are better suitable for the classification of surrounding rocks;③ When the learning rate is 0.01, the classification performance of the model is the best.

    参考文献
    相似文献
    引证文献
引用本文

柳厚祥,李子意.基于MSR算法的公路隧道围岩分级方法[J].交通科学与工程,2023,39(3):60-66,97.
LIU Houxiang, LI Ziyi. Classification method for surrounding rock of highway tunnels based on MSR algorithm[J]. Journal of Transport Science and Engineering,2023,39(3):60-66,97.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-07-23
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-07-14
  • 出版日期:
文章二维码