2025年4月7日    1:14    星期一
紧邻围护结构超小净距盾构施工数值分析
CSTR:
作者:
作者单位:

(1. 中铁九局集团第四工程有限公司,辽宁 沈阳,110032; 2. 中铁九局集团有限公司,辽宁 沈阳,110051)

作者简介:

李辉(1981—),女,中铁九局集团第四工程有限公司高级工程师。E-mail:447608207@qq.com

中图分类号:

U491.9


Numerical analysis of ultra-small interval shield receiving construction near envelope structure
Author:
Affiliation:

(1. China Railway No.9 Group Fourth Engineering Co., Ltd., Shenyang 110032, China;2. China Railway No.9 Group Co., Ltd., Shenyang 110051, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • | | | |
  • 文章评论
    摘要:

    为研究紧邻围护结构超小净距盾构施工过程对围岩及结构的影响,以深圳市地铁14号线的宝荷站—宝龙站区间段工程为研究背景,分析在紧邻围护结构超小净距盾构施工过程中盾构-围岩-围护结构相互作用体系的受力和地表沉降规律。采用Midas GTS有限元软件对该工程盾构施工的全过程进行数值动态仿真,得到该工程盾构掘进过程中盾构-围岩-围护结构相互作用体系的变形及受力规律,并将数值模拟结果与监测结果进行对比,验证了数值模拟的准确性;在此基础上分析了土仓压力、同步注浆压力、刀盘扭矩等参数对土层及既有结构稳定性的影响,给出了施工参数建议值。研究结果表明:若依照参数建议值进行施工,产生的地表沉降等参数均在容许范围内。该研究可为类似工程提供参考。。

    Abstract:

    In order to study the influence of the construction process of the ultra-small spacing shield adjacent to the envelope structure on the surrounding rock and structure. Taking the construction of Shenzhen metro line 14 from Baohe station to Baolong station as the background, the stress law and surface settlement law of shield - surrounding rock-envelope structure interaction system were analyzed during the construction of ultra-small clear distance shield adjacent to the envelope structure. The finite element software was used to simulate the whole process of shield construction. The deformation and stress law of the interaction system were obtained during the process of shield tunneling. Compared with the monitoring results, the accuracy of numerical simulation was proved. Furthermore, the influence of parameters such as soil chamber pressure, synchronous grouting pressure and cutterhead torque on the stability of soil layer and existing structure was analyzed. And the appropriate construction parameters were proposed. The results show that, when the proposed parameters are used in construction, that the displacement parameters such as surface settlement are within the allowable range. The correctness of the research method and conclusion in this paper is verified.

    参考文献
    [1] 孙凤明. 小近距并行盾构隧道的掘进相互影响分析[D]. 杭州: 浙江大学, 2015. SUN Fengming. Analysis of interaction between small-spacing parallel shield tunnel excavations[D]. Hangzhou: Zhejiang University, 2015.
    [2] 董云鹏, 孙伯乐. 小净距地铁隧道近距离侧穿建筑物影响研究[J]. 铁道工程学报, 2018, 35(11): 87-91. DOI: 10.3969/j.issn.1006-2106.2018.11.016.DONG Yunpeng, SUN Bole. Research on the influence of small distance subway tunnel passing through buildings at short distance[J]. Journal of Railway Engineering Society, 2018, 35(11): 87-91. DOI: 10.3969/j.issn.1006-2106.2018.11.016.
    [3] 葛取平. 城市轨道交通暗挖与盾构小净距并行隧道施工[J]. 山西建筑, 2016, 42(8): 203-204. DOI: 10.13719/j.cnki.cn14-1279/tu.2016.08.104.GE Quping. On underground excavation and shield small net-span parallel tunnel construction along urban rail traffic[J]. Shanxi Architecture, 2016, 42(8): 203-204. DOI: 10.13719/j.cnki.cn14-1279/tu.2016.08.104.
    [4] 朱文民. 盾构隧道小近距下穿既有隧道施工技术研究[J]. 山西建筑, 2012, 38(13): 216-217, 288. DOI: 10.13719/j.cnki.cn14-1279/tu.2012.13.062.ZHU Wenmin. Study on the construction technology of short-distance shield tunnel under-crossing existing tunnel[J]. Shanxi Architecture, 2012, 38(13): 216-217, 288. DOI: 10.13719/j.cnki.cn14-1279/tu.2012.13.062.
    [5] NGOC-ANH DO, DANIEL DIAS, ORESTE P, et al. Three-dimensional numerical simulation of a mechanized twin tunnels in soft ground[J]. Tunnelling and Underground Space Technology, 2014, 42: 40-51. DOI: 10.1016/j.tust.2014.02.001.
    [6] 陈恺. 地铁盾构隧道下穿矩形顶管隧道施工参数分析以及变形机制[D]. 包头: 内蒙古科技大学, 2021. DOI: 10.27724/d.cnki.gnmgk.2021.000407.CHEN Kai. Analysis of construction parameters and deformation mechanism of metro shield tunnel undergoing rectangular jacking tunnel[D]. Baotou: Inner Mongolia University of Science & Technology, 2021. DOI: 10.27724/d.cnki.gnmgk.2021.000407.
    [7] 杨德春, 刘建国. 对建成地铁车站结构改造设计与施工的数值模拟分析[J]. 现代隧道技术, 2012, 49(3): 94-103. DOI: 10.13807/j.cnki.mtt.2012.03.003.YANG Dechun, LIU Jianguo. Numerical simulation analysis of the design and construction of a restructured metro station[J]. Modern Tunnelling Technology, 2012, 49(3): 94-103. DOI: 10.13807/j.cnki.mtt.2012.03.003.
    [8] 朱郁文. 既有地铁车站暗挖扩建施工安全性影响研究[J]. 建筑机械化, 2018, 39(7): 40-43. DOI: 10.13311/j.cnki.conmec.2018.07.013.ZHU Yuwen. Study on existing subway station underground excavation and extension construction safety impact[J]. Construction Mechanization, 2018, 39(7): 40-43. DOI: 10.13311/j.cnki.conmec.2018.07.013.
    [9] 李建设, 陈慧超, 李政. 深圳地铁11号线车公庙站—红树湾站区间盾构隧道小净距上穿既有线区间隧道施工关键技术[J]. 隧道建设, 2014, 34(4): 374-379. DOI: 10.3973/j.issn.1672-741X.2014.04.014.LI Jianshe, CHEN Huichao, LI Zheng. Key construction technologies for shield-bored tunnel of Chegongmiao Station-hongshuwan Station section on No. 11 line of Shenzhen metro crossing closely above existing metro line[J]. Tunnel Construction, 2014, 34(4): 374-379. DOI: 10.3973/j.issn.1672-741X.2014.04.014.
    [10] 章慧健, 仇文革. 小净距城市浅埋隧道夹岩力学特征的数值模拟研究[J]. 现代隧道技术, 2009, 46(3): 22-26, 32. DOI: 10.3969/j.issn.1009-6582.2009.03.005.ZHANG Huijian, QIU Wenge. Mechanical performance of the sandwiched rock between twin shallow tunnels[J]. Modern Tunnelling Technology, 2009, 46(3): 22-26, 32. DOI: 10.3969/j.issn.1009-6582.2009.03.005.
    [11] 姜克寒, 刘邦, 秦坤元, 等. 断层破碎带中泥水盾构掘进参数优化研究[J]. 交通科学与工程, 2020, 36(3): 43-49. DOI: 10.16544/j.cnki.cn43-1494/u.2020.03.007.JIANG Kehan, LIU Bang, QIN Kunyuan, et al. Study on the optimization for mud-water shield driving parameters in fault fracture zone[J]. Journal of Transport Science and Engineering, 2020, 36(3): 43-49. DOI: 10.16544/j.cnki.cn43-1494/u.2020.03.007.
    [12] 陈红军, 刘新荣, 杜立兵, 等. 浅埋层状岩体偏压隧道滑移破坏机理及判定方法[J]. 地下空间与工程学报, 2021, 17(6): 1733-1741.CHEN Hongjun, LIU Xinrong, DU Libing, et al. Sliding failure mechanism and its criterion of unsymmetrical loading shallow buried tunnel in layered rock mass[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(6): 1733-1741.
    [13] 卢光兆, 周博, 徐锋, 等. 浅埋偏压隧道进洞施工围岩稳定分析[J]. 山东大学学报(工学版), 2021, 51(4): 61-70. DOI: 10.6040/j.issn.1672-3961.0.2020.523.LU Guangzhao, ZHOU Bo, XU Feng, et al. Stability analysis and construction mechanics of shallow buried bias tunnel openings[J]. Journal of Shandong University (Engineering Science), 2021, 51(4): 61-70. DOI: 10.6040/j.issn.1672-3961.0.2020.523.
    [14] 杨会. 盾构刀具的切削机理分析及多目标优化设计[D]. 长沙: 湖南大学, 2015.YANG Hui. Analysis of cutting mechanism and multi-objective optimization design of shield tool[D]. Changsha: Hunan University, 2015.
    [15] 甘鹏路. 富水软弱地层浅埋暗挖隧道地层变形规律及预测研究[D]. 杭州: 浙江大学, 2016.GAN Penglu. Research on the rules and prediction of ground deformation induced by tunnelling with shallow tunnelling method under water-rich soft stratum[D]. Hangzhou: Zhejiang University, 2016.
    [16] 杜建明, 房倩, 海路, 等. 地表变坡下浅埋偏压隧道围岩压力计算方法[J]. 中南大学学报(自然科学版), 2021, 52(11): 4088-4098. DOI: 10.11817/j.issn.1672-7207.2021.11.029.DU Jianming, FANG Qian, HAI Lu, et al. Calculation method for surrounding rock pressure of shallow tunnel with asymmetrical pressure of variable slopes[J]. Journal of Central South University (Science and Technology), 2021, 52(11): 4088-4098. DOI: 10.11817/j.issn.1672-7207.2021.11.029.
    [17] 严涛, 李坤杰, 牟智恒, 等. 变坡条件下浅埋偏压隧道围岩压力解析法[J]. 西南交通大学学报, 2020, 55(3): 531-536. DOI: 10.3969/j.issn.0258-2724.20180825.YAN Tao, LI Kunjie, MOU Zhiheng, et al. Analytical method for calculation of surrounding rock pressure of shallow-buried and unsymmetrically loaded tunnel adjacent to variable slope[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 531-536. DOI: 10.3969/j.issn.0258-2724.20180825.
    [18] 孙振宇, 张顶立, 房倩, 等. 浅埋小净距公路隧道围岩压力分布规律[J]. 中国公路学报, 2018, 31(9): 84-94. DOI: 10.3969/j.issn.1001-7372.2018.09.010.SUN Zhenyu, ZHANG Dingli, FANG Qian, et al. Distribution of surrounding rock pressure of shallow highway tunnels with small spacing[J]. China Journal of Highway and Transport, 2018, 31(9): 84-94. DOI: 10.3969/j.issn.1001-7372.2018.09.010.
    [19] 卢晓颖. 考虑时间效应的深埋小净距隧道围岩压力分析[J]. 公路交通科技, 2021, 38(10): 100-106, 143. DOI: 10.3969/j.issn.1002-0268.2021.10.013.LU Xiaoying. Analysis on surrounding rock pressure on deep buried neighborhood tunnel considering time-dependency effect[J]. Journal of Highway and Transportation Research and Development, 2021, 38(10): 100-106, 143. DOI: 10.3969/j.issn.1002-0268.2021.10.013.
    [20] 刘远鹏, 邓荣斌, 王子茂, 等. 岩溶区特大断面小净距隧道群综合探测成果分析[J]. 武汉工程大学学报, 2020, 42(5): 546-551. DOI: 10.19843/j.cnki.CN42-1779/TQ.201911013.LIU Yuanpeng, DENG Rongbin, WANG Zimao, et al. Analysis of comprehensive detection results of large section and small clear distance tunnel group in Karst area[J]. Journal of Wuhan Institute of Technology, 2020, 42(5): 546-551. DOI: 10.19843/j.cnki.CN42-1779/TQ.201911013.
    [21] 武松, 汤华, 罗红星, 等. 浅埋大断面公路隧道渐进破坏规律与安全控制[J]. 中国公路学报, 2019, 32(12): 205-216. DOI: 10.19721/j.cnki.1001-7372.2019.12.021.WU Song, TANG Hua, LUO Hongxing, et al. Progressive failure law and control criterion for safe construction of shallow buried highway tunnel with different grades of surrounding rock[J]. China Journal of Highway and Transport, 2019, 32(12): 205-216. DOI: 10.19721/j.cnki.1001-7372.2019.12.021.
    [22] 赵晓勇. 地铁盾构隧道侧穿高铁桥群桩设置隔离桩影响分析[J]. 城市轨道交通研究, 2021, 24(5): 116-120, 126. DOI: 10.16037/j.1007-869x.2021.05.024.ZHAO Xiaoyong. Influence analysis of setting separation piles for metro shield tunnel side-crossing high-speed railway bridge pile groups[J]. Urban Mass Transit, 2021, 24(5): 116-120, 126. DOI: 10.16037/j.1007-869x.2021.05.024
    [23] 陈红军, 刘新荣, 杜立兵, 等. 浅埋层状岩体偏压隧道滑移破坏机理及判定方法[J]. 地下空间与工程学报, 2021, 17(6): 1733-1741.CHEN Hongjun, LIU Xinrong, DU Libing, et al. Sliding failure mechanism and its criterion of unsymmetrical loading shallow buried tunnel in layered rock mass[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(6): 1733-1741.
    [24] 李沣展, 岳健, 安永林, 等. 河底浅埋小净距隧道施工期渗流性状分析[J]. 湖南科技大学学报(自然科学版), 2021, 36(4): 47-54. DOI: 10.13582/j.cnki.1672-9102.2021.04.007.LI Fengzhan, YUE Jian, AN Yonglin, et al. Analysis of seepage characteristics during construction of shallow buried tunnels with small clear spacing at the bottom of river[J]. Journal of Hunan University of Science and Technology (Natural Science Edition), 2021, 36(4): 47-54. DOI: 10.13582/j.cnki.1672-9102.2021.04.007.
    [25] 毕志刚, 李文杰, 吕文国, 等. 闽南小净距隧道中夹岩力学特性与加固措施[J]. 科学技术与工程, 2021, 21(34): 14805-14813. DOI: 10.3969/j.issn.1671-1815.2021.34.047.BI Zhigang, LI Wenjie, LYU Wenguo, et al. Mechanical characteristics and reinforcement measures of middle rock column of shallow bias small spacing tunnel in southern Fujian[J]. Science Technology and Engineering, 2021, 21(34): 14805-14813. DOI: 10.3969/j.issn.1671-1815.2021.34.047.
    [26] 潘文韬, 吴枋胤, 何川, 等. 浅埋偏压隧道施工工法研究与非对称设计优化[J]. 隧道建设(中英文), 2021, 41(增刊1): 352-361.PAN Wentao, WU Fangyin, HE Chuan, et al. Construction methods and asymmetric design optimization for shallow-buried tunnels subjected to unsymmetrical loads[J]. Tunnel Construction, 2021, 41(sup 1): 352-361.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李辉,王怀东,王洋,等.紧邻围护结构超小净距盾构施工数值分析[J].交通科学与工程,2023,39(6):101-110,122.
LI Hui, WANG Huaidong, WANG Yang, et al. Numerical analysis of ultra-small interval shield receiving construction near envelope structure[J]. Journal of Transport Science and Engineering,2023,39(6):101-110,122.

复制
分享
文章指标
  • 点击次数:76
  • 下载次数: 235
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-03-30
  • 在线发布日期: 2024-01-16
文章二维码