基于BP神经网络的固化红土抗压强度预测
CSTR:
作者:
作者单位:

(昆明理工大学 建筑工程学院,云南 昆明 650500)

作者简介:

通讯作者:

王硕(1998—),男,硕士生,主要从事路基路面工程方面的研究工作。E-mail:2291272870@qq.com

中图分类号:

TU411

基金项目:

拉萨市设计院校企合作项目(649320200038)


Compressive strength prediction of solidified laterite based on BP neural network
Author:
Affiliation:

(Faculty of Civil Engineering and Architecture, Kunming University of Science and Technology, Kunming 650500, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为分析不同掺量的偏高岭土与石灰共同掺入玄武岩残积红土中对土体的改良效果,本试验选取偏高岭土的掺量分别为0%、2%、4%、6%和8%,石灰的掺量分别为0%、2.5%、5.0%、7.5%和10.0%,同时掺入玄武岩残积红土中,制作25组不同固化红土,对其进行28 d无侧限抗压强度正交试验,并用MATLAB软件建立神经网络预测模型,预测固化红土养护28 d的抗压强度。研究结果表明:本模型预测误差最大为4.56%,拟合度为0.997,且本方法比常规回归分析法更简单、更准确,可预测不同固结材料和掺量的固化红土抗压强度,提高试验效率。

    Abstract:

    In order to explore the improvement effect of different dosages of metakaolin and lime mixed with residual soil of basaltic weathered soil, this experiment selected kaolin dosages of 0%, 2%, 4%, 6%, and 8%, and lime dosages of 0%, 2.5%, 5.0%, 7.5%, and 10.0%, simultaneously mixed with basalt residual laterite to prepare 25 groups of differently solidified red soils. An orthogonal test on the unconfined compressive strength of the soils was conducted for 28 days, and a neural network prediction model was established by MATLAB to predict the 28-day compressive strength of solidified laterite. The results show that the maximum prediction error of the model is 4.56%, with a coefficient of determination of 0.997. Furthermore, this method offers simplicity, higher efficiency, and greater accuracy over conventional regression analysis techniques, which enables the prediction of the compressive strength of solidified laterite with different consolidation materials and dosages, thereby improving experimental efficiency.

    参考文献
    相似文献
    引证文献
引用本文

王硕,唐正光,华伦.基于BP神经网络的固化红土抗压强度预测[J].交通科学与工程,2024,40(2):108-115.
WANG Shuo, TANG Zhengguang, HUA Lun. Compressive strength prediction of solidified laterite based on BP neural network[J]. Journal of Transport Science and Engineering,2024,40(2):108-115.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-04-12
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-29
  • 出版日期:
文章二维码