2025年4月4日    23:14    星期五
基于低频采集数据的城市道路车辆轨迹重构
CSTR:
作者:
作者单位:

(1.重庆交通大学 交通运输学院,重庆 400074;2.苏交科集团股份有限公司,江苏 南京 210018;3.长江大学 生命科学学院,湖北 荆州 434025)

通讯作者:

帅庆珍(1999—),男,硕士生,主要从事城市交通拥堵治理方面的研究工作。E-mail:2824597410@qq.com

中图分类号:

U491.1

基金项目:

重庆市科学技术协会项目(2018KXKT06)


Vehicle trajectory reconstruction of urban roads based on low-frequency data collection
Author:
Affiliation:

(1. College of Traffic and Transportation, Chongqing Jiaotong University, Chongqing 400074, China; 2. JSTI Group, Nanjing 210018, China; 3. College of Life Science, Yangtze University, Jingzhou 434025, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在进行城市道路交通流量调查及部分重要路网节点、交叉口交通数据采集时,采用低频数据收集方式会使车辆轨迹匹配精度低、交通流量数据误差大。通过研究隐式马尔可夫理论及最小费用最大流模型,提出一种车辆轨迹重构方法。该方法利用多源数据融合技术以及地理信息定位匹配技术,对无检测器路段缺失的各项交通基础数据进行合理的演进推算,为车辆轨迹重构研究提供重要的数据支撑。利用成都市某区域出租车的高频轨迹点位数据集进行验证。结果表明,利用车辆低频轨迹点位进行轨迹重构的完全覆盖率达到了89.4%,验证了所提出的车辆轨迹重构方法的有效性及可行性。

    Abstract:

    Focused on low accuracy in vehicle trajectory matching and traffic flow data errors, when low-frequency collection approach was used during the survey of urban road traffic flow and traffic data collection of particularly at critical road network nodes. A vehicle trajectory reconstruction method was proposed based on the study of the hidden Markov theory and the minimum cost maximum flow model. Using multi-source data fusion technology and geographic information positioning matching technology, the missing traffic basic data of the non-detector road section were reasonably estimated to provide important data support for the research of vehicle trajectory reconstruction. Then, a high-frequency trajectory point dataset of taxi vehicles in a specific region of Chengdu City was employed to validate the effectiveness of this method. The results demonstrate that the complete coverage rate of trajectory reconstruction using low-frequency vehicle trajectory points reaches 89.4%, confirming the method's efficacy and practicality.

    参考文献
    [1] 吴艳平, 李小龙. 一种基于平面交叉口的浮动车数据轨迹重构方法[J]. 江西科学, 2021, 39(1): 160-165. DOI: 10.13990/j.issn1001-3679.2021.01.030.WU Yanping, LI Xiaolong. A method of trajectory reconstruction of floating car data based on intersection[J]. Jiangxi Science, 2021, 39(1): 160-165. DOI: 10.13990/j.issn1001-3679.2021.01.030.
    [2] 高强, 张凤荔, 王瑞锦, 等. 轨迹大数据: 数据处理关键技术研究综述[J]. 软件学报, 2017, 28(4): 959-992. DOI: 10.13328/j.cnki.jos.005143.GAO Qiang, ZHANG Fengli, WANG Ruijin, et al. Trajectory big data: a review of key technologies in data processing[J]. Journal of Software, 2017, 28(4): 959-992. DOI:10.13328/j.cnki.jos.005143.
    [3] PFOSER D, JENSEN C S, THEODORIDIS Y. Novel approaches to the indexing of moving object trajectories[C]//Proceedings of the 26th VLDB Conference. Cairo:CiteSeer, 2000: 395-406.
    [4] MEHRAN B, KUWAHARA M. Fusion of probe and fixed sensor data for short-term traffic prediction in urban signalized arterials[J]. International Journal of Urban Sciences, 2013, 17(2): 163-183. DOI: 10.1080/12265934.2013.776291.
    [5] 丁军, 张佐, 陈洪昕, 等. 车辆轨迹数据的若干处理方法研究[J]. 交通信息与安全, 2011, 29(5): 10-14, 35. DOI: 10.3963/j.ISSN1674-4861.2011.05.003.DING Jun, ZHANG Zuo, CHEN Hongxin, et al. Methods to process vehicle trajectory data[J]. Journal of Transport Information and Safety, 2011, 29(5): 10-14, 35. DOI: 10.3963/j.ISSN1674-4861.2011.05.003.
    [6] 陈志军, 吴超仲, 吕能超, 等. 基于改进三次Hermite插值的车辆时空轨迹重构研究[J]. 交通信息与安全, 2013, 31(6): 43-46.CHEN Zhijun, WU Chaozhong, LYU Nengchao, et al. Vehicle trajectory reconstruction based on improved cubic Hermite interpolation[J]. Journal of Transport Information and Safety, 2013, 31(6): 43-46.
    [7] YU B, KIM S H, BAILEY T, et al. Curve-based representation of moving object trajectories[C]//Proceedings of International Database Engineering and Applications Symposium. Coimbra: IEEE, 2004: 419-425. DOI: 10.1109/IDEAS.2004.1319817.
    [8] 邢皓, 谭世琦, 张佐, 等. 车辆轨迹重构方法综述[J]. 交通工程, 2019, 19(4): 20-28. DOI: 10.13986/j.cnki.jote.2019.04.004.XING Hao, TAN Shiqi, ZHANG Zuo, et al. A review of vehicle trajectory reconstruction methods[J]. Journal of Transportation Engineering, 2019, 19(4): 20-28. DOI: 10.13986/j.cnki.jote.2019.04.004.
    [9] 任刚,徐泓基,诸赛.基于浮动车卫星定位数据的轨迹重构方法:中国,CN202210899716.4[P].2023-11-08.REN Gang, XU Hongji, ZHU Sai. A trajectory reconstruction method based on the floating vehicle satellite positioning data:China,CN202210899716.4[P].2023-11-08.
    [10] 余志, 廖琼华, 何兆成. 基于车辆身份感知数据的路段轨迹重构方法研究[J]. 交通运输系统工程与信息, 2019, 19(4): 87-93. DOI: 10.16097/j.cnki.1009-6744.2019.04.013.YU Zhi, LIAO Qionghua, HE Zhaocheng. Vehicle trajectory reconstruction in signalized-link using vehicle identification data[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(4): 87-93. DOI: 10.16097/j.cnki.1009-6744.2019.04.013.
    [11] 康路, 闫浩文, 张黎明. 电子地图间的实时坐标转换系统[J]. 遥感信息, 2018, 33(2): 122-126. DOI:10.3969/j.issn.1000-3177.2018.02.019.KANG Lu, YAN Haowen, ZHANG Liming. Coordinate conversion system among various electronic maps[J]. Remote Sensing Information, 2018, 33(2): 122-126. DOI: 10.3969/j.issn.1000-3177.2018.02.019.
    [12] 王忠礼, 刘德利. 测绘领域中常用坐标系统及其转换计算[J]. 吉林建筑大学学报, 2021, 38(5): 34-38. DOI: 10.3969/j.issn.1009-0185.2021.05.006.WANG Zhongli, LIU Deli. The commonly used earth coordinate system and its transformation calculation in surveying and mapping fields[J]. Journal of Jilin Jianzhu University, 2021, 38(5): 34-38.DOI: 10.3969/j.issn.1009-0185.2021.05.006.
    [13] 彭小婷. WGS84经纬度转百度平面坐标的离线转换方法研究 [J]. 测绘与空间地理信息, 2017, 40(9): 196-200.PENG Xiaoting. Research on the offline conversion method of WGS84 latitude and longitude to Baidu plane coordinates [J]. Surveying and spatial Geographic Information, 2017, 40(9): 196-200.
    [14] 诸云,王建宇,江静婷.基于TTI法的城市道路拥堵评价研究[C]//2017世界交通运输大会.北京:中国公路学会,2017.ZHU Yun, WANG Jianyu, JIANG Jingting. Research on urban road congestion evaluation based on TTI method[C]//World Transportation Congress 2017. Beijing: China Highway and Transportation Society,2017.
    [15] 谢海莹. 基于典型经验路径库的路径规划算法[J]. 交通运输研究, 2016, 2(1): 17-22. DOI: 10.16503/j.cnki.2095-9931.2016.01.003.XIE Haiying. A route planning algorithm based on typical experience route database[J]. Transport Research, 2016, 2(1): 17-22. DOI: 10.16503/j.cnki.2095-9931.2016.01.003.
    [16] 唐克双, 徐天祥, 潘昂, 等. 基于定点检测数据的城市干道车辆轨迹重构[J]. 同济大学学报(自然科学版), 2016, 44(10): 1545-1552. DOI: 10.11908/j.issn.0253-374x.2016.10.011.TANG Keshuang, XU Tianxiang, PAN Ang, et al. Signal timing and detector data-based reconstruction of vehicle trajectories on urban arterials[J]. Journal of Tongji University (Natural Science), 2016, 44(10): 1545-1552. DOI:10.11908/j.issn.0253-374x.2016.10.011.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

帅庆珍,张家铭,周凤.基于低频采集数据的城市道路车辆轨迹重构[J].交通科学与工程,2024,40(2):146-153.
SHUAI Qingzhen, ZHANG Jiaming, ZHOU Feng. Vehicle trajectory reconstruction of urban roads based on low-frequency data collection[J]. Journal of Transport Science and Engineering,2024,40(2):146-153.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-26
  • 在线发布日期: 2024-04-29
文章二维码