智能网联高速公路合流区的分组协同控制
DOI:
作者:
作者单位:

长沙理工大学交通运输工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(52372296);湖南省自然科学基金项目(2023JJ30039);长沙市科技计划项目(kh2301004);国家重点研发计划项目(2022YFC3803700)


Grouping cooperative control in intelligent connected freeway merging zones
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高智能网联环境下高速公路合流区通行效率,有必要实施实时协同控制。针对中、高密度下高速公路合流区交通拥堵问题,兼顾通行效率和模型求解复杂度,提出一种智能网联车辆(Connected and Autonomous Vehicle,CAV)的分组协同合流控制方法。首先,在合流区上游路段设置一定长度的探测区域,当未分组车辆即将离开探测区时,根据车辆到达合流点的最短时间,基于K-means聚类对探测区内主线和匝道所有未分组车辆共同分组。然后,根据先进先出(first in first out,FIFO)规则确定组间的通行次序。最后,采用优化模型优化组内车辆的通行次序。使用SUMO与Python建立联合仿真平台对在总流量1800、2000、2200、2400辆每小时和流量比25:75、50:50、75:25不同组合下的协同控制效果进行评价。结果表明,与基于车头时距阈值的分组策略相比,在分组数量为3的情况下,本文策略可使平均延误降低4.5%以上、计算时间减少81.3%以上。合流区车辆分组协同控制可以在提高通行效率和降低计算复杂度之间做出较好的平衡。

    Abstract:

    In order to improve the traffic efficiency of freeway merging area under connected and autonomous environment, it is necessary to implement real-time cooperative control. Aiming at the traffic congestion problem of freeway merging area under medium and high flow densities, a grouping cooperative merging control method of connected and autonomous vehicle (CAV) is proposed taking into account of the access efficiency and model solving complexity. Firstly, designated detection zones of specific lengths are set up on the upstream section of the merging zone, and when the ungrouped vehicles are about to leave the detection area, all the ungrouped vehicles of the mainline and ramp in the detection area are grouped together based on the shortest time of the vehicles arriving at the merging point, which is based on K-means clustering. Then, the order of passage for different groups is determined based on the first in first out (FIFO) rule. Finally, a typical optimization model is sequentially applied to optimize the passage sequence and trajectory of vehicles within each group. A joint simulation platform using SUMO and Python is utilized to evaluate the effectiveness of cooperative control under different combinations of total flow rates of 1800, 2000, 2200 and 2400 vehicles per hour and flow ratios of 25:75, 50:50 and 75:25. The results show that compared with the grouping strategy based on headway threshold, the strategy in this paper can reduce the average delay by more than 4.5% and the computation time by more than 81.3% with the number of groups being 3. Group cooperative control of vehicles in the merging area can make a better balance between improving access efficiency and reducing computational complexity.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-18
  • 最后修改日期:2024-05-10
  • 录用日期:2024-05-12
  • 在线发布日期:
  • 出版日期:
文章二维码