基于眼动数据的驾驶员视觉负荷影响要素研究
DOI:
CSTR:
作者:
作者单位:

同济大学交通运输工程学院

作者简介:

通讯作者:

中图分类号:

TP391.9;U491???????????????????

基金项目:

新型混合交通流背景下交通适驾性影响机理及改善对策研究(国家自然科学基金面上项目,批准号:52272320)


Research on factors affecting driver's visual load based on eye movement data
Author:
Affiliation:

Fund Project:

Research on influence mechanism and Improvement Countermeasures of traffic drivability under the background of new mixed traffic flow (general project of National Natural Science Foundation of China, approval No.: 52272320)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    研究旨在提出一种基于眼动数据得到的负荷评价指标——眼动离散程度,确定不同视觉负荷下眼动离散程度的划分阈值,并利用该指标探究交通环境要素对驾驶员视觉负荷影响的程度排序,进而为交通设计提供参考。研究基于DADA2000数据集,利用眼动特征识别算法,得到眼动离散程度数值;通过对事故前后场景进行区分,得到不同视觉负荷下眼动离散程度的划分阈值;进一步,利用语义分割算法将事故前3秒的眼动点集中区域与语义分割得到的要素进行匹配,通过机器学习算法对各交通环境要素影响的重要程度进行排序。研究发现,利用眼动离散程度区分驾驶员视觉负荷具有可行性,事故前较短时间内眼动离散程度会降低至原来的1/3,眼动点也会集中在碰撞物或事故主要责任要素上;驾驶员视觉负荷主要要素是自行车参与者、路侧标志杆、路面状况。成果可进一步用于事故防范与预测。研究结论表明,视觉负荷受到侵入路权(如非机动车占用机动车道)或模糊路权(如道路无标线或标线模糊)的交通要素影响最大,实际交通设计时应优先明确各参与者的路权分配问题,并严格保证路权互不干扰。

    Abstract:

    This study aimed to propose a load evaluation index based on eye movement data—eye movement dispersion—and to determine the thresholds of eye movement dispersion under different visual loads. The index was then used to explore the ranking of the influence of various traffic environment factors on driver visual load, providing reference for traffic design. The research utilized the DADA2000 dataset and employed an eye movement feature recognition algorithm to obtain the degree of eye movement dispersion. By distinguishing the scenes before and after accidents, the thresholds of eye movement dispersion under different visual loads were determined. Furthermore, a semantic segmentation algorithm was used to match the concentrated areas of eye movement points within 3 seconds before the accident with the elements obtained through semantic segmentation. A machine learning algorithm was then used to rank the importance of each traffic environment element. The study found that using eye movement dispersion to distinguish driver visual load was feasible. The eye movement dispersion decreased to one-third of its original value shortly before an accident, and the eye movement points concentrated on collision objects or the main responsible factors of the accident. The primary elements contributing to driver visual load were bicycle participants, roadside marker posts, and road conditions. These findings could be further utilized for accident prevention and prediction. The study concluded that visual load was most affected by traffic elements that invade the right of way (e.g., non-motor vehicles occupying motor vehicle lanes) or unclear right of way (e.g., roads without markings or with fuzzy markings). In practical traffic design, the allocation of right of way for each participant should be prioritized, ensuring that the right of way is strictly maintained without interference.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-23
  • 最后修改日期:2024-06-13
  • 录用日期:2024-06-13
  • 在线发布日期:
  • 出版日期:
文章二维码