基于新息探测的INS/GNSS/ODO车辆组合定位数据融合方法
DOI:
CSTR:
作者:
作者单位:

洛阳师范学院 物理与电子信息学院

作者简介:

通讯作者:

中图分类号:

U666.1

基金项目:

国家自然科学(62301241);河南省高等学校重点科研项目(23A580003,24A120012,23A470013)


An Innovation Detection-Based Data Fusion Method for INS/GNSS/ODO Integrated Vehicle Positioning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高INS/GNSS/ODO车辆组合定位系统的定位精度和系统可靠性,提出了一种基于新息探测准则的自适应无迹卡尔曼滤波数据融合方法(Innovation Detection Adaptive Unscented Kalman Filter Federated Kalman Filter , IDAUKF-FKF)。在传感器因为故障或环境干扰,产生包含粗差或其他异常观测数据时,该算法能够利用新息探测技术对观测信息进行检测,识别并剔除异常量测数据;同时,采用噪声估计器对局部滤波器子系统量测噪声的统计特性进行在线调整,约束局部估计误差对全局滤波的影响。仿真验证表明,提出的多传感器数据融合算法能够精准剔除异常观测并优化局部估计,相较于联邦卡尔曼滤波和UKF-FKF,定位误差分别降低了约41%和约30%,显著提高INS/GNSS/ODO车辆组合定位系统的定位精度和抗干扰性能。

    Abstract:

    To enhance the positioning accuracy and system reliability of the INS/GNSS/ODO integrated vehicle positioning system, an adaptive unscented Kalman filter data fusion method based on the innovation detection criterion (Innovation Detection Adaptive Unscented Kalman Filter Federated Kalman Filter, IDAUKF-FKF) is proposed. When the sensors produce abnormal measurement data due to faults or interference, containing gross errors or other disturbances, this algorithm can detect the observation information based on the innovation detection criterion, identify and eliminate the abnormal measurement data. Additionally, a noise estimator is employed to adjust the statistical characteristics of the measurement noise in the local filter subsystems online, constraining the impact of local estimation errors on the global filtering. Simulation results demonstrate that the proposed multi-sensor data fusion algorithm can accurately eliminate abnormal observations and optimize local estimates. Compared to federated Kalman filtering and UKF-FKF, the positioning errors are reduced by approximately 41% and 30%, respectively, significantly improving the positioning accuracy and anti-interference performance of the INS/GNSS/ODO integrated vehicle positioning system.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-30
  • 最后修改日期:2024-06-30
  • 录用日期:2024-07-18
  • 在线发布日期:
  • 出版日期:
文章二维码