基于二次规划的智能车辆多信号交叉口速度规划
DOI:
CSTR:
作者:
作者单位:

昆明理工大学 交通工程学院

作者简介:

通讯作者:

中图分类号:

U121 ?????????? ??? ????????????????????????????????????

基金项目:

丘陵山区作物中小型农机装备研发


Intelligent vehicle multi signal intersection speed planning based on quadratic programming
Author:
Affiliation:

Fund Project:

Research and development of small and medium-sized agricultural machinery and equipment for crops in hilly and mountainous areas

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    【目的】随着城市交通的日益复杂,智能车辆在多信号灯场景下的能耗问题愈发受到关注。本研究的目的在于探寻一种有效的方法来提升智能车辆在多信号灯场景下的能耗经济性,并且着重减少车辆在城市工况巡航时所产生的能耗,进而优化车辆的能源利用效率。【方法】提出了一种结合动态(DP)二次规划(QP)的节能车速规划框架(dynamic programming-quadratic programming,DP-QP),该框架将车速规划的最优控制问题转化为一个非线性优化问题。首先采用随机撒点的方式对车辆的通行区域进行划分,接着运用动态规划对初步规划的路径进行优化处理,之后借助二次规划对路径进行平滑操作,并且将经过平滑处理后的轨迹作为二次优化的初始迭代值,以此加速最优速度轨迹的收敛进程。为了对该框架的有效性进行验证,在Matlab/Simulink平台上搭建了车速规划模型,并结合Carsim和PreScan进行了联合仿真测试,同时构建了不规则信号灯相位和配时(SPaT)场景。【结果】经过仿真测试发现,DP-QP 方法取得了显著的成果。与M-IDM算法相比,DP-QP能够使能耗降低21%。同时,相较于SSO算法,DP-QP的计算时间快了近14倍。【结论】综上所述,DP-QP算法成功地在实时性和节能效果之间找到了最佳的平衡点,在多信号灯路口场景下具有明显的优势,能够为智能车辆在城市工况下的能耗优化提供有力的支持。

    Abstract:

    [Purposes]With the increasing complexity of urban traffic, the energy consumption of intelligent vehicles in the multi-signal scene has been paid more and more attention. The purpose of this study is to explore an effective method to improve the energy consumption economy of intelligent vehicles in multi-signal scenarios, and focus on reducing the energy consumption generated by vehicles in urban cruising conditions, so as to optimize the energy utilization efficiency of vehicles. 【Methods】A dynamic programming-quadratic programming (DP-QP) framework combining dynamic (DP) quadratic programming (QP) is proposed, which transforms the optimal control problem of speed planning into a nonlinear optimization problem. Firstly, the passing area of the vehicle is divided by randomly scattering points, then the path of the preliminary planning is optimized by dynamic programming, and then the path is smoothed by quadratic programming, and the smoothed trajectory is taken as the initial iteration value of the quadratic optimization, so as to accelerate the convergence process of the optimal speed trajectory. In order to verify the validity of the framework, the vehicle speed planning model was built on the Matlab/Simulink platform, and the joint simulation test was carried out with Carsim and PreScan. At the same time, the irregular signal light phase and timing (SPaT) scenario was constructed. [Findings]The simulation results show that the DP-QP method has achieved remarkable results. Compared to the M-IDM algorithm, DP-QP can reduce energy consumption by 21%. At the same time, the calculation time of DP-QP is nearly 14 times faster than that of SSO algorithm. [Conclusions] To sum up, the DP-QP algorithm successfully finds the best balance point between real-time performance and energy-saving effect, and has obvious advantages in multi-signal intersection scenarios, which can provide strong support for energy consumption optimization of intelligent vehicles in urban working conditions.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-27
  • 最后修改日期:2025-01-07
  • 录用日期:2025-01-07
  • 在线发布日期:
  • 出版日期:
文章二维码