融合自注意力机制的PSO-LSTM地下管线沉降预测方法
DOI:
CSTR:
作者:
作者单位:

1.长沙市轨道交通集团有限公司;2.湖南城市学院

作者简介:

通讯作者:

中图分类号:

基金项目:


A PSO - LSTM method for predicting the settlement of underground pipelines integrated with the self - attention mechanism
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    【目的】地下管线沉降一直是矩形顶管隧道施工过程中的关键参数。传统的预测方法往往依赖于经验模型和统计分析,难以准确预测复杂隧道结构的沉降。针对这一挑战,本文提出了一种融合自注意力机制的基于粒子群优化(Particle Swarm Optimization,PSO)长短期记忆(Long Short-term Memory,LSTM)神经网络的矩形顶管施工诱发地下管线沉降预测方法(PSO-LSTM-Self Attention Mechanism,PSO-LSTM-SAM)。【方法】该方法首先通过粒子群优化(PSO)算法优化LSTM网络的超参数,确保LSTM能够以最优配置处理输入数据。LSTM网络被用来提取输入数据中的时序特征,捕捉长短期依赖关系。接着,引入Self-attention机制,通过自适应地为不同时间步赋予不同的权重,增强模型对关键时间节点的关注,有效捕捉时间序列中的重要信息。最终,通过全连接层输出地表沉降的预测结果。【结果】为了验证本算法的优越性和鲁棒性,以长沙市轨道交通6号线工程实测数据构建地下管线沉降数据集,选用LSTM、LSTM-SAM、PSO-SVR模型对不同位置顶管沉降的预测情况展开对比分析。结果表明:融合自注意力机制的PSO-LSTM矩形顶管沉降预测模型的均方误差(MSE)均方根误差(RMSE)平均绝对误差(MAE)、决定系数(R2)均为最优。【结论】从而验证了PSO-LSTM-SAM模型具有更优的地下管线预测性能。

    Abstract:

    [Purposes]Underground pipeline settlement is a key parameter during the construction of rectangular tunnel segments. Traditional prediction methods often rely on empirical models and statistical analysis, which struggle to accurately forecast settlement in complex tunnel structures. To address this challenge, this paper proposes a prediction method for underground pipeline settlement induced by rectangular tunnel construction, which integrates the Self-Attention Mechanism with Particle Swarm Optimization (PSO) and Long Short-Term Memory (LSTM) neural networks (PSO-LSTM-SAM). [Methods]:The method first optimizes the hyperparameters of the LSTM network using the PSO algorithm to ensure that the LSTM can process the input data with optimal configuration. The LSTM network is then used to extract temporal features from the input data and capture long- and short-term dependencies. Next, the Self-Attention mechanism is introduced to adaptively assign different weights to different time steps, enhancing the model’s focus on critical time points and effectively capturing important information from the time series. Finally, the model outputs the predicted surface settlement through a fully connected layer. [Findings] To verify the superiority and robustness of the proposed algorithm, a dataset of underground pipeline settlement was constructed using measured data from the Changsha Metro Line 6 project. The prediction performance of settlement at different tunnel locations was compared using the LSTM, LSTM-SAM, and PSO-SVR models. The results show that the PSO-LSTM-SAM model, which incorporates the Self-Attention mechanism, outperforms the others in terms of Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and the coefficient of determination (R2). [Conclusions] This study validates that the PSO-LSTM-SAM model exhibits superior performance in predicting underground pipeline settlement.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-12
  • 最后修改日期:2024-11-20
  • 录用日期:2024-11-21
  • 在线发布日期:
  • 出版日期:
文章二维码