通勤者出行决策协同建模方法研究
DOI:
CSTR:
作者:
作者单位:

1.浙江大学智能交通研究所;2.东南大学交通学院;3.绍兴文理学院,绍兴市交通投资集团有限公司

作者简介:

通讯作者:

中图分类号:

U491.1

基金项目:

国家自然科学基金资助项目(52002063)


A collaborative modeling method on commuters' travel decisions
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着城市化进程加快,通勤者出行决策的过程与内容变得更复杂,如选择何种出行方式、提前多久出发等,这些决策往往是相互耦合、彼此影响的。如何挖掘出行决策的影响因素,探究各出行决策间的耦合关系,从而为交通规划管理提供依据,是一个重要问题。该文章针对通勤者出行的两个重要决策——出行方式和出发时间开展双变量协同分析。设计RP调查问卷获取通勤者出行数据,基于清洗后数据对两个决策变量分别建立单因变量模型并对比择优,结果表明线性回归在出发时间预测上的综合表现较好,随机森林分类在出行方式预测上的表现较好。在此基础上提出协同建模新方法,对比发现协同模型的准确率提高,改善了以往单一决策分析的不足。

    Abstract:

    With the acceleration of urbanization, the process and content of commuters" travel decisions have become more complex, such as choosing which travel mode and how far in advance to leave, etc., and these decisions are often coupled and influenced by each other. How to mine the influencing factors of travel decisions and explore the coupling relationship between each travel decision, so as to provide a basis for transportation planning and management, is an important issue. This article carried out a bivariate synergistic analysis for two important decisions of commuters" travel - travel mode and departure time. The RP questionnaire was designed to obtain commuters" travel data, and based on the cleaned data, a unidimensional model was built for the two decision variables and compared with the optimal one, and the results show that linear regression performs better in the prediction of departure time, and random forest performs better in the prediction of travel mode. On this basis, a new method of collaborative modeling was proposed. The comparison reveals that the accuracy of the collaborative model is enhanced, which improves the shortcomings of the previous single-decision analysis.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-01
  • 最后修改日期:2024-11-11
  • 录用日期:2024-11-11
  • 在线发布日期:
  • 出版日期:
文章二维码