城市轨道交通多站点短时客流智能预测研究
DOI:
CSTR:
作者:
作者单位:

南京林业大学 汽车与交通工程学院

作者简介:

通讯作者:

中图分类号:

U121

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Research on Intelligent Short-Term Passenger Flow Prediction for Multiple Sta-tions in Urban Rail Transit Systems
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着智能交通的快速发展,精准的城市轨道交通客流预测能够有效提高资源调配效率以及降低运营成本,但客流时间序列存在的时空依赖性和不确定性导致短时客流难以精准预测。针对该问题,本研究结合传统时序预测模型和深度学习模型,提出了一种基于深度学习的城市轨道交通多站点短时客流智能预测模型,以提高不同类型站点的短时客流预测精度。首先采用小波阈值法对地铁数据进行去噪,消除误导性信息并提升数据质量。其次,运用K-Means聚类方法将地体站点根据客流特征进行分类,以明确各个站点的需求模式。接着,将处理后的短时客流样本分别输入长短期记忆网络(long short-term memory,LSTM)、门控循环单元(gated recurrent unit,GRU)及整合移动平均自回归模型(autoregressive integrated moving average model, ARIMA)三个单一模型进行预测。根据每个模型在验证集上的预测误差表现赋予不同的权重,堆叠集成学习训练元学习器得到不同模型的权重数值,完成模型的建立。在试验中设置噪声容忍测试验证模型的稳定性,采用北京市地铁数据进行模型验证,试验结果表明该智能预测模型在不同环境条件下均展现出较低的预测误差且抗噪声干扰能力较强,同时将该模型与单一模型及其他已有模型相比,客流预测精度分别提高了4.819%与8.714%。因此,基于深度学习的城市轨道交通多站点短时客流智能预测模型面对多样化与复杂数据时仍具备较高的准确性与鲁棒性,能够有效应对客流预测中的挑战。

    Abstract:

    With the rapid development of intelligent transportation, accurate passenger flow forecasting in urban rail transit can effectively enhance resource allocation efficiency and reduce operational costs. However, the spatiotemporal dependency and uncertainty present in passenger flow time series make it challenging to predict short-term pas-senger flow accurately. To address this issue, this study proposes a deep learning-based intelligent forecasting model for short-term passenger flow at multiple urban rail transit stations, combining traditional time series fore-casting models with deep learning techniques to enhance the accuracy of short-term passenger flow predictions for different types of stations. First, the wavelet thresholding method is used to denoise the subway data, elimi-nating misleading information and enhancing data quality. Secondly, the K-Means clustering method is employed to categorize the subway stations based on passenger flow characteristics, in order to clarify the demand patterns of each station. Next, the processed short-term passenger flow samples are input into the three individual models: LSTM, GRU, and ARIMA for prediction. Weights are assigned based on the prediction error performance of each model on the validation set. Stacked ensemble learning is then used to train a meta-learner, obtaining the weight values for the different models and completing the model establishment. In the experiment, noise tolerance testing is conducted to validate the model's stability, using subway data from Beijing for model verification. The experi-mental results indicate that the intelligent forecasting model exhibits low prediction errors under various envi-ronmental conditions and demonstrates strong resistance to noise interference. Additionally, compared to indi-vidual models and other existing models, the accuracy of passenger flow predictions is improved by 4.819% and 8.714%, respectively. Therefore, the deep learning-based intelligent forecasting model for short-term passenger flow at multiple urban rail transit stations maintains high accuracy and robustness when facing diverse and com-plex data, effectively addressing the challenges

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-24
  • 最后修改日期:2024-12-09
  • 录用日期:2024-12-09
  • 在线发布日期:
  • 出版日期:
文章二维码