桥梁监测信号异常值剔除与去噪方法研究
DOI:
CSTR:
作者:
作者单位:

1.湖南轨道技术应用研究中心有限公司;2.长沙理工大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Research on Abnormal Value Removal and Denoising Methods for Bridge Monitoring Signals
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    【目的】针对桥梁监测信号中的异常值识别和环境噪声干扰问题,提出了一种基于最小二乘法改进箱型图的异常值识别算法和联合快速集成经验模态分解(Fast Ensemble Empirical Mode Decomposition,FEEMD)与小波阈值的去噪方法。【方法】首先,采用改进的箱型图算法对异常值进行识别和替换。其次,利用FEEMD对异常值处理后的桥梁监测信号进行分解,计算分解分量的方差贡献率,并去除方差贡献率较小的模态的分量,将剩余的信号进行小波阈值处理,最后重构信号得到去噪后的信号。【结果】对模拟信号和实测信号分别进行分析,结果表明:基于最小二乘法改进的箱型图算法在异常值识别上的召回率达到了100%。同时基于FEEMD联合小波阈值的去噪方法能有效地滤除干扰噪声信号,对含有不同噪声的模拟信号处理结果分析,去噪后的均方根误差相比小波阈值、FEEMD、EMD联合小波阈值的方法最小,分别为0.4676、0.2619、0.16195和0.1034,且信噪比提高了8dB到12dB,分别为15.81dB、21.63dB、25.64dB和28.50dB;对实测信号的处理结果显示,去噪后的平滑度指标值以及去除的噪声模上均优于小波阈值去噪、FEEMD以及EMD联合小波阈值的去噪方法。【结论】研究结果表明,所提出的基于最小二乘法改进的箱型图算法和联合FEEMD与小波阈值的去噪方法能够有效解决桥梁监测信号中的异常值识别和噪声问题。研究成果可为桥梁信号的预处理提供参考。

    Abstract:

    [Purposes] This study addresses the challenges of anomaly detection and environmental noise interference in bridge monitoring signals by proposing an enhanced boxplot algorithm based on the least squares method for anomaly detection and replacement, alongside a denoising technique that integrates Fast Ensemble Empirical Mode Decomposition (FEEMD) with wavelet thresholding.[Methods] Initially, the improved boxplot algorithm is utilized to identify and replace anomalies within the bridge monitoring signals. Following this anomaly processing, FEEMD is applied to decompose the signal. The variance contribution rate of the decomposition components is calculated, leading to the removal of components with lower variance contribution rates. Subsequently, the remaining signal undergoes wavelet thresholding, and the denoised signal is reconstructed.[Findings] The analysis of simulated signals and real measured signals shows that the improved box plot algorithm based on the least squares method achieves a recall rate of 100% in outlier recognition. Additionally, the denoising method combining FEEMD with wavelet thresholding effectively filters out interference noise signals. The analysis of the denoising results for simulated signals with different noise levels indicates that the root mean square error (RMSE) after denoising is the smallest compared to wavelet thresholding, FEEMD, and EMD combined with wavelet thresholding, with values of 0.4676, 0.2619, 0.16195, and 0.1034, respectively. Furthermore, the signal-to-noise ratio (SNR) is improved by 8 dB to 12 dB, with values of 15.81 dB, 21.63 dB, 25.64 dB, and 28.50 dB, respectively. The results of processing real measured signals also show that the smoothness index values and the residual noise levels after denoising are superior to those achieved by wavelet thresholding, FEEMD, and EMD combined with wavelet thresholding denoising methods. [Conclusions] The research results show that the proposed improved box plot algorithm based on the least squares method and the denoising method combining FEEMD with wavelet thresholding can effectively address the issues of outlier recognition and noise in bridge monitoring signals. The research findings can serve as a reference for the preprocessing of bridge signals.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-24
  • 最后修改日期:2024-12-01
  • 录用日期:2024-12-02
  • 在线发布日期:
  • 出版日期:
文章二维码