DOI:10.16544/j.cnki.cn43-1494/u.202204182024081981

文章编号:1674-599X(2024)04-0047-10

引用格式:贺君,滕强,奉思东,等.可更换波形钢腹板连梁低周反复加载试验研究[J].交通科学与工程,2024,40(4):47-56.

Citation: HE Jun, TENG Qiang, FENG Sidong, et al. Study of low circumferential repeated loading tests on replaceable link beam with corrugated steel web[J]. J Transp Sci Eng, 2024, 40(4): 47-56.

可更换波形钢腹板连梁低周反复加载试验研究

贺君,滕强,奉思东,李传习

(长沙理工大学 土木工程学院,湖南 长沙 410114)

摘 要:为研发新型、可更换的消能构件及建立震后性能可快速恢复的桥梁结构体系,提出一种新型的波形钢腹板 消能连梁并将其应用于桥墩横梁或盖梁上。通过对6个消能连梁进行低周反复加载试验,比较了不同跨高比、腹板 形式(波形和工字形)试件的破坏机理及滞回曲线、骨架曲线、位移延性系数等抗震性能参数。研究结果表明:试件 失效分为翼缘板-端板焊缝断裂、腹板撕裂和翼缘板及腹板屈曲破坏三种破坏形态,在波形腹板连梁加载后期翼缘 板屈曲导致试件整体破坏;在各试件转角相同的情况下,波形钢腹板连梁的耗能能力比工字形钢腹板连梁的强,跨 高比小的波形连梁具有更好的荷载保持能力与耗能能力,但延性较差。

关键词:可更换消能连梁;波形钢腹板;抗震性能;拟静力试验;耗能能力

中图分类号:U448.22 文献标志码:A

Study of low circumferential repeated loading tests on replaceable link beam with corrugated steel web

HE Jun, TENG Qiang, FENG Sidong, LI Chuanxi

(School of Civil Engineering, Changsha University of Science & Technology, Changsha 410114, China)

Abstract: In order to develop a new type of replaceable energy dissipating structure and establish a rapid recoverable system of bridges after the earthquake, a new type of link beam with corrugated steel web is proposed to apply in the crossbeam or bent cap of bridge piers. Repeated low-period loading tests were conducted on six energy dissipating beams to compare the damage mechanisms and seismic performance parameters, such as hysteresis curves, skeleton curves, and displacement ductility coefficients of specimens with different span-to-height ratios and web forms (corrugated and I-beam). The experimental results indicate that there are three typical failure modes of test specimens: fracture at the weld seam connecting link flange to end plate, fracture at the web and bucking at the flange and the web. As well as the whole specimen failure due to flange buckling in the late loading stage of a wave web link girder. In the case of the same turning angle of each specimen, the energy dissipation capacity, but its ductility is poorer. Under the same rotation of each specimen, the energy dissipation capacity of specimens with corrugated steel webs is better than that of specimens with I-shaped steel webs. The

通信作者:贺君(1981一),男,教授,主要从事钢-混凝土组合桥梁方面的研究工作。E-mail: hejun@csust.edu.cn

收稿日期:2022-04-18

基金项目:国家自然科学基金资助项目(51978081);湖南省自然科学基金资助项目(2021JJ30712);长沙理工大学研究生科研 创新项目(CX2021SS132)

corrugated weblink beam with smaller span-height ratio has better load retention capacity and energy dissipation capacity, but has less ductility.

Key words: replaceable energy dissipation connecting beam; corrugated steel web; seismic performance; quasi-static test; energy dissipation capacity

近十年来,国内外大地震频发,如2015年智利 大地震、2017年四川九寨沟大地震等,强震区的桥 梁遭到了严重破坏,尤其是作为主要抗侧力构件的 桥墩发生剪切、弯曲、弯剪等破坏,系梁被损伤,以 致桥梁整体倾覆、倒塌。桥梁作为主要的交通生命 线工程,地震致其破坏不仅带来严重的经济损失和 人员伤亡,而且导致交通中断,严重影响震后救援 工作的及时开展。因此,提高桥梁特别是桥墩结构 的抗震性能及震后可恢复性能至关重要^[1]。

可更换的消能构件通过耗散地震能量来保护 主要结构,具有可快速恢复的特点^[2],最初用于钢框 架、剪力墙等建筑结构的抗震[3-5]。功能可恢复墩柱 结构是近期发展起来的新型桥墩结构,包含主体结 构(墩柱)与可更换构件(耗能减震装置)。EI-BAHEY 等^[6-7]首先将可更换构件引入桥墩的抗震设 计和修复中,在抗震设计中采用了剪切钢板连接、 防屈曲支撑连接两种连接形式将节点板与墩柱相 连,以方便震后更换,并且通过模型试验与数值分 析验证了这两种连接形式的耗能装置均能明显提 高桥墩的强度和刚度,使墩柱在地震大位移作用下 仍能处于弹性状态。孙利民等[8]对剪切型连梁和屈 曲约束支撑两种耗能构件进行了拟静力试验和数 值模拟,结果表明消能构件能够使桥墩的强度和刚 度明显提高。谢文等[9]证明设置了可更换构件的新 型耗能桥墩具有良好的抗震性能及耗能能力,其为 桥墩提供了良好的保护作用。孙治国等[10]采用拟 静力试验与数值分析相结合的方法,验证了防屈曲 约束支撑(buckling-restrained brace, BRB)能够减小 排架桥墩的震后损伤。石岩等^[11]提出了将 BRB 设 置在桥梁排架墩中以提升排架墩抗震能力的设计 方法,并以实例说明了这种方法的可行性。徐秀丽 等[12]提出了一种带钢连梁的新型自耗能高墩组合 结构,通过开展低周反复加载试验与数值模拟,研 究其抗震性能,试验表明这种结构的耗能能力、承 载力、延性变形能力均比传统形式的薄壁墩的好: 王源等[13]设计和制作了普通双柱式高墩和设置消 能连梁的双柱式高墩,结果表明设置消能连梁的双 柱式高墩的抗震性能更好。

以往研究证明将耗能构件(防屈曲支撑或剪切 屈服连梁)应用于桥墩,可提高桥墩的强度、延性与 耗能能力,在强震作用下可使其保持弹性状态或只 遭受轻微损伤。但上述可更换的耗能构件形式多 样,结构复杂,为此,本文提出一种新型可更换的波 形钢腹板消能连梁,并将其应用于桥墩横梁或盖梁 上(图1)。中间部分为可更换的波形钢腹板消能连 梁,其与两侧桥墩预埋钢梁段以螺栓相连。连梁中 的波形钢腹板是主要的耗能构件,与平钢板相比, 波形钢腹板纵向刚度低,可自由伸缩,变形能力强, 延性好,且无需设置纵横向加劲肋,具有较大的平 面外刚度与良好的抗剪切屈曲能力[14-15],在水平荷 载作用下,能够增强结构的抗侧刚度^[16]。与混凝土 连梁、整体式钢连梁相比,耗能段与非耗能段之间 的连接螺栓117具有方便拆卸、更换的特点,可满足 震后桥梁下部结构性能快速恢复的要求。

Fig. 1 Bridge piers using replaceable link beam with corrugated steel webs

1 试验方案

1.1 工程背景

本文以某10m高的双柱墩桥梁为工程背景。 原桥墩由盖梁、钢筋混凝土墩柱、承台、桩基及钢筋 混凝土连梁组成,现用钢牛腿及低屈服波形钢腹板 消能连梁代替钢筋混凝土连梁,如图2所示。

本文先以低屈服波形钢腹板消能连梁为切入 点,通过设计波形钢腹板与工字形钢消能连梁试 件,开展拟静力试验,对比分析不同跨高比、腹板形

式试件的滞回曲线、骨架曲线、位移延性等抗震性 能参数,研究波形钢腹板连梁的耗能机理、破坏模 式以及强度、刚度退化规律,为设置波形钢腹板连 梁的桥墩的抗震理论分析提供参考。后续将开展 设置低屈服波形钢腹板连梁的双柱式桥墩的抗震 性能试验研究工作。

1.2 试件设计

本文参考文献[4]进行波形钢腹板消能连梁试 件的设计。试件由开孔端板、翼缘板和腹板组成, 其构造及尺寸如图3所示,图中,b为翼缘板外伸宽 度;t_f为翼缘板厚度;t_w为腹板厚度;b_s为加劲肋宽 度;t_f为加劲肋厚度;d_s为加劲肋间距。设计依据包 括:①消能连梁翼缘板和腹板的宽厚比限值;②连 梁剪切屈服荷载与弯曲屈服荷载设计值;③加劲肋 布置间距和宽厚比限值;④连梁构件的焊接方法。

本文设计了三组消能连梁试件(每组有两个参数完全一样、编号不一样的试件),即跨高比为2.3 (试件编号CB23-1、CB23-2)和1.8(试件编号CB18-1、CB18-2)的波形钢腹板消能连梁试件,以及跨高 比为2.3(试件编号IB23-1、IB23-2)的工字形钢消能 连梁试件。波形钢腹板的参数参照《波形钢腹板组 合梁桥技术标准》(CJJ/T 272—2017),单个波长400 mm,其中直板长108 mm,斜板投影长92 mm,高56 mm,弯折角度149°。试件的各部件之间均采用开 坡口、熔透焊的形式进行焊接,端板开有6个孔径为 32 mm的螺栓孔,螺栓采用10.9级M30高强度螺栓, 螺栓间距满足《钢结构设计标准》(GB 50017—

消能连梁弯曲屈服荷载*M*_p与剪切屈服荷载设 计值*V*₀的计算公式为:

$$M_{\rm p} = f_{\rm v} Z \tag{1}$$

$$V_{\rm p} = 0.6 f_{\rm y} A_{\rm w} \tag{2}$$

式中:*A*_w为腹板截面积;*Z*为塑性截面模量;*f*_y为钢材的屈服强度。

消能连梁翼缘板和腹板的宽厚比应满足:

$$b/t_{\rm f} \le 0.30 \sqrt{E_{\rm s}/f_{\rm y}} \tag{3}$$

$$h/t_{\rm w} \le 2.45 \sqrt{E_{\rm s}/f_{\rm y}} \tag{4}$$

试件的等效连梁长度系数用 eV_p/M_p 表示, eV_p/M_p 为无量纲常数,应满足:

$$eV_{\rm p}/M_{\rm p} < 1.6 \tag{5}$$

式(3)~(5)中:e为连梁的有效长度;E_s为弹性模量。 消能连梁腹板的加劲肋间距限值d_{max}与宽厚比

表1 试件参数

Table 1 Parameters of test specimens

试件编号	腹板	腹板厚	翼缘板外伸	翼缘板厚	试件跨高	腹板宽厚	翼缘板宽	加劲肋厚	加劲肋宽	梁段长度
	类型	度 t_w /mm	宽度 b/mm	度 t _f /mm	比 <i>L/H</i>	比 h/t_w	厚比 <i>b/t</i> f	度 t_s /mm	厚比 b_s/t_s	$eV_{\rm p}/M_{\rm p}$
СВ23-1 СВ23-2	波形	6	72	10	2.3	57	7.2			1.4
IB23-1 IB23-2	工字形	6	72	10	2.3	57	7.2	6	12	1.4
CB18-1,CB18-2	波形	6	72	10	1.8	57	7.2			1.0

注:H=h+2t_f,为连梁截面高度。

应满足文献[18]和《建筑抗震设计规范》(GB 50011—2010)中规定的消能梁段板件宽厚比要求:

$$d_{\max} = 1.5(30t_{\rm w} - h/5) \tag{6}$$

$$b_s/t_s \le 0.56 \sqrt{E_s/f_y} \tag{7}$$

试件与加载装置之间采用高强度螺栓进行连接。《钢结构设计标准》(GB 50017—2017)中规定高强度螺栓的承载力设计值的计算式为:

$$N_{\rm v}^{\rm b} = 0.9 k n_{\rm f} \mu_{\rm f} P \tag{8}$$

式中:N^b_v为高强度螺栓受剪承载力设计值;k为孔形 系数,取1.0;n_r为传力摩擦面数量,取1;µ_r为摩擦面 的抗滑移系数,取0.35;P为高强度螺栓的预拉力设 计值。

1.3 材料性能试验

试件采用Q345钢材。从腹板及翼缘板母材上 取样并做成试件进行静力拉伸试验,试件尺寸如图 4所示。腹板试样夹持端长50.0 mm,宽36.0 mm,过 渡段圆弧半径为20.0 mm,平行段长70.0 mm,宽 12.5 mm。翼缘板试样夹持端长60.0 mm,宽36.0 mm,过渡段圆弧半径为20.0 mm,平行段长70.0 mm,宽20.0 mm。材料性能试验结果见表2。

Fig. 4 Material tensile test specimens (unit: mm)

1.4 加载与测试装置

图 5(a) 所示的加载装置的构件自上而下依次

表2 钢材力学性能

Table 2Material	properties	of steel
-----------------	------------	----------

立77 /六	钢材	屈服强度	弹性模量	极限强度	
지어퍼	类型	f_y /MPa	$E_{\rm s}/{ m GPa}$	$f_{\rm u}/{ m MPa}$	
翼缘板	Q345	363.1	205	559.1	
腹板	Q345	345.5	205	557.1	

为地梁、垫梁、消能连梁、传力构件与作动器,这些 构件均采用高强度螺栓连接。地梁通过左侧反力 梁与右侧反力架固定,并通过两侧压梁锚定在地面 上,限制其横向、竖向移动。通过电液伺服作动器 对装置施加横向水平循环荷载,作动器头部两侧通 过两根拉紧的钢丝绳与螺杆固定在反力架上,防止 装置侧倾与扭转。

试验采用位移控制加载,加载制度如图5(b)所示。向左施加推力时位移为正值,施加拉力时位移

Fig. 5 Loading device and loading protocol

为负值,其中2、4 mm为预加载位移,然后依次增加 4 mm,每级循环加载3次,当焊缝断裂或者腹板撕裂 导致承载力显著下降时停止加载。

测点布置如图6所示,图中6个位移传感器分 别布置在腹板顶部、中部与底部的两侧用以测量试 件的水平位移;在左、右翼缘板侧面的中间位置各 布置1个位移传感器,用来确定加载过程中试件有 无侧向位移。在每个翼缘板上布置8个单向应变 片,在腹板两侧布置8个单向应变片,在中间位置布 置5个应变花来测量剪应变。

2 试验结果及分析

2.1 试验现象及破坏模式

为方便比较试验现象,用加载位移产生的梁端 转角来描述各试件的损伤,结果见表3。由表3可 知,波形钢腹板组中的4个试件CB23-1、CB23-2、 CB18-1、CB18-2最先出现翼缘板屈曲,屈曲转角均为 0.040 rad。随着屈曲转角的增大,CB23-1、CB18-1、 CB18-2试件翼缘板的屈曲范围与屈曲程度有所扩 大,腹板开始出现屈曲,试验荷载明显下降。 CB23-2试件翼缘板端部出现焊缝断裂,随即焊缝 穿透整个翼缘板截面,最后腹板撕裂,但未出现腹 板屈曲现象,此时停止加载。在加载过程中,跨高 比为1.8的CB18-1、CB18-2波形腹板梁试件屈曲范 围与屈曲程度明显比其余试件的大,这说明跨高 比较小的试件,其端部承受的剪力较大。波形腹 板梁试件翼缘板的宽度是按照规范中工字形钢梁 宽厚比设计的,未考虑波形形状参数的影响,这导 致翼缘板端部波形内侧翼缘板向内的屈曲程度较 大。工字形钢梁试件IB23-1、IB23-2的翼缘板与端 板处的焊缝均最先出现断裂,在转角为0.075 rad 时才出现翼缘板屈曲,最终翼缘板端部焊缝贯通,

翼缘板脱离焊脚并向上拔起,试件丧失承载能力。

表3 试件损伤过程

 Table 3
 Damage process of test specimens

	拔	员伤发生	时的转				
试件	翼缘板-	翼缘板	腹板	翼缘 板-端	腹板	破坏模式	最大 转角/
编号	端板焊 缝开裂	屈曲	屈曲	板焊缝	撕裂		rad
CB23-1	_	0.040	0.06		_	翼缘板屈曲, 失稳破坏	0.07
CB23-2	0.05	0.040	-	0.075	0.09	腹板撕裂	0.09
IB23-1	0.04	0.075	-	0.090	_	翼缘板-端板 焊缝断裂	0.09
IB23-2	0.06	0.075	-	0.075	0.09	翼缘板-端板 焊缝断裂	0.09
CB18-1	-	0.040	0.07	-	0.08	翼缘板及腹 板屈曲	0.08
CB18-2	-	0.040	0.06	-	-	翼缘板及腹 板屈曲	0.08

注:腹板撕裂是由翼缘板-端板焊缝贯通间接引起的。

试件最终破坏形态分为三种:翼缘板-端板焊缝 断裂、腹板撕裂和翼缘板及腹板屈曲破坏。试件破 坏形态如图7所示(图中破坏形态前的数字1、2、3、4 表示损伤顺序)。其中,试件CB23-2、IB23-2均较早 出现翼缘板端部焊缝开裂现象,焊缝的焊接质量及 焊脚尺寸对试验结果影响较大。工字形钢梁试件 IB23-1、IB23-2在加载过程中未见明显腹板屈曲现 象;波形腹板钢梁试件CB23-1、CB23-2、CB18-1、 CB18-2的腹板屈曲现象出现较晚,且屈曲程度不 大,屈曲部位位于腹板弯折处,说明翼缘板先于腹 板进入材料屈服平台,在加载后期腹板才参与耗 能,其耗能能力比工字形钢梁腹板的强。当所有试 件失效时,端板连接螺栓均未发生塑性变形,试件 可轻易拆卸更换。波形钢腹板试件的翼缘板宽度 是按照规范中工字形钢梁宽厚比设计的,这导致翼 缘板端部的宽厚比过大,在试件加载过程中易出现 局部屈曲现象。

2.2 滞回曲线与骨架曲线

各试件的滞回曲线如图8所示。由图8可知, 试件CB23-2、IB23-2的滞回曲线存在明显捏拢现 象,这是由焊缝拉伸闭合引起的,这两个试件在加载 过程中均出现了不同程度的焊缝断裂,在循环荷载作 用下只需施加较小的力,断裂处的焊缝就能产生较大 的位移;另外,这两个试件在一定程度上受到了装置 滑移的影响。其余试件滞回曲线的饱满程度一般。

图 7 试件破坏形态 Fig. 7 Failure modes of test specimens

试件CB23-1、CB18-1、IB23-1的骨架曲线如图9 所示。分析图9可以看出,这三个试件的骨架曲线 在趋势上大致相似,当转角绝对值较小时,骨架曲 线呈直线,试件处于弹性状态;在试件屈服后,承载 力增速变缓。这三个试件的承载力分别在转角为 0.038、0.053、0.060 rad 时达到正峰值,其中 IB23-1 试 件的承载力最大,CB18-1的次之,CB23-1的最小。 工字形钢梁试件的正峰值承载力比相同跨高比的 波形钢腹板试件的大21.5%。在正峰值承载力之 后,这三个试件承载力的下降速率出现明显差别, 试件 CB23-1 的承载力在转角 0.035 rad 内下降了 83 kN,试件IB23-1的承载力在转角0.029 rad内下降了 117 kN,试件CB18-1的承载力在转角0.034 rad内下 降了98 kN,试件IB23-1承载力的下降速率比试件 CB23-1的大70.1%,比试件CB18-1的大40.0%。由 此可见,波形腹板钢梁试件CB23-1具有良好的荷载 保持能力与稳定性,CB18-1次之,工字形钢梁试件 IB23-1最弱。

2.3 延性系数

μ

延性系数可根据骨架曲线中的特征点(屈服 点、峰值点与破坏点)来确定。在骨架曲线的屈服 点不明显的情况下,可通过能量等值法求出屈服 点,如图10所示。分析图10可知,当构件吸收的能 量等于理想弹塑性体吸收的能量时,斜直线与峰值 荷载水平线的交点的横坐标值即为屈服位移Δ_y,纵 坐标值即为屈服荷载*F*_y。通常取0.85*F*_m(*F*_m为峰值 荷载)为极限荷载*F*_n,其对应极限位移Δ_n。

一般采用位移延性系数µ来评价结构的延性, 其表达式为:

$$= \Delta_{\rm u} / \Delta_{\rm y} \tag{9}$$

试件的屈服点、峰值点、破坏点以及位移延性 系数试验结果见表4。分析表4可知,试件CB23-1

Fig. 9 Skeleton curves

图9

转角/rad

骨架曲线

Δ, $\Delta_{\rm m}$ Δ Δ 图 10 能量等值法 Fig. 10 Energy equivalence method

的平均延性系数为1.692,试件IB23-1的平均延性系 数为1.539,试件CB18-1的平均延性系数为1.433。 由此可见,跨高比较大的试件具有更好的延性和塑 性变形能力;对于跨高比相同的波形腹板钢梁试件 与工字形钢梁试件,前者的延性更大,耗能能力更 强。跨高比较小的试件的屈服荷载大,其翼缘板承 受较大的弯曲荷载并过早出现局部屈曲,这使得试 件承载力提前下降,延性也随之减小。

(11)

表4 特征点与位移延性系

Table 4 Characteristic points and displacement ductility coefficient

试件编号	hu # 구·너	屈服点		峰值点		破坏点		位移延性系数
	川戦刀円	F_y/kN	$\Delta_{ m y}/{ m rad}$	$F_{\rm m}/{ m kN}$	$\Delta_{\rm m}/{ m rad}$	$F_{\rm u}/{ m kN}$	$\Delta_{ m u}/{ m rad}$	μ
CB23-1	正	168.15	0.029	184.76	0.042	157.05	0.053	1.827
	负	-207.08	-0.043	-218.77	-0.053	-185.96	-0.067	1.558
IB23-1	正	220.81	0.050	235.51	0.060	200.18	0.075	1.500
	负	-201.22	-0.045	-224.96	-0.060	-191.22	-0.071	1.578
CB18-1	正	213.65	0.045	226.83	0.053	192.81	0.064	1.422
	负	-219.63	-0.045	-232.56	-0.054	-197.68	-0.065	1.444

2.4 刚度与强度退化

在循环荷载的作用下,试件的损伤随着位移的 增加而不断积累,最终试件出现刚度减小的现象。 一般用系数 K_i来表示刚度的退化程度,其表达 式为:

$$K_{i} = \frac{|+F_{i}| + |-F_{i}|}{|+X_{i}| + |-X_{i}|}$$
(10)

式中:+ F_i 、- F_i 分别为第i次正、负峰值点的荷载值; + X_i 、- X_i 分别为第i次正、负峰值点的转角。

各试件的刚度退化曲线如图 11 所示。由图 11 可知,各试件的刚度退化系数随着转角的增大而减 小,工字形钢梁试件与波形腹板钢梁试件表现出不 同的刚度退化趋势,工字形钢梁试件的刚度退化系 数基本呈直线下降趋势,而波形腹板钢梁试件的刚 度退化系数基本呈曲线下降趋势。跨高比小的试 件 CB18-1、CB18-2 在初期刚度退化较慢,在屈服前 (0.045 rad)其刚度退化系数明显比其他试件的大, 说明其具有良好的抵抗变形的能力;在破坏阶段, 由于翼缘板屈曲程度增大,其刚度退化逐渐加快。

试件的峰值承载力随着循环加载次数的增加 而减小,这种现象被称为强度退化。一般用强度退 化系数*K*_s表示强度的退化程度。*K*_s的表达式为:

$$K_{\rm s} = F_{\rm peak3} / F_{\rm peak1}$$

 $_{3}/F_{\rm peak1}$

式中: F_{peak1}、F_{peak3}分别为各级位移下第1次循环加载 与第3次循环加载的峰值承载力。

各试件强度退化曲线如图 12 所示。由图 12 可 知,当转角绝对值小于 0.05 rad 时,各试件的强度退 化系数基本上都大于 0.95,说明各试件在损伤前,其 荷载的保持能力良好。试件 CB23-1 在±0.035 rad 时 强度退化较快,这是因为该试件在此时开始屈服, 强度有所降低。当转角达到±0.05 rad 时,各试件进 入破坏阶段,试件的强度退化系数下降迅速。其 中,试件 CB23-2、IB23-1、IB23-2受焊缝开裂影响,试 件 CB18-1受翼缘板撕裂影响,在各级循环荷载的作 用下,这些试件的裂口进一步扩大,强度退化非常 严重,直到试件破坏,停止加载。试件 CB23-1、 CB18-2 在加载过程中没有出现断裂现象,仅翼缘板 发生屈曲失稳破坏,在破坏阶段,强度退化系数虽 有降低,但基本保持在 0.85 以上,说明这两个试件 的荷载保持能力相对较强。

2.5 耗能能力

计算各试件在各级位移下第1次循环加载时的 滞回环面积,并用其来衡量各试件的耗能能力,结 果如图13所示。由图13可知,随着加载转角的增 大,各试件的耗能能力呈上升趋势。当转角较小时,耗能曲线斜率较小,耗能能力较弱;在转角超过屈服点后,各试件耗能曲线的斜率逐步增大,即试件屈服后耗能能力有所增强。试件CB23-2、IB23-2 受焊缝开裂影响,耗能能力较弱。当转角相同时,相同跨高比下波形腹板钢梁试件的耗能能力整体上比工字形钢梁试件的强。其中,跨高比较小的波形腹板钢梁试件CB18-1、CB18-2的耗能能力最强,在转角为0.07 rad时其耗能能力分别达到了17.72、17.81 kN·rad,此时试件CB18-1的耗能能力比试件IB23-1的高23.18%。

Fig. 13 Comparison of energy consumption capacity

2.6 可更换能力

在本文的低周反复加载试验中,消能连梁与其 他试验装置采用高强度螺栓连接,装配式设计使构 件具有较好的可更换能力。在整个试验过程中,构 件的损伤集中在消能连梁上,装置中的其他构件可 反复使用。消能连梁作为牺牲构件震后可更换,其 安装与拆卸由三人在较短时间内即可完成。

3 结论

本文设计了不同跨高比的波形钢腹板与工字 形钢消能连梁试件,通过拟静力试验进行试件的抗 震性能分析,得出的主要结论如下:

 1)试件破坏形态主要分为:翼缘板-端板焊缝 断裂、腹板撕裂和翼缘板及腹板屈曲破坏。焊缝存 在质量问题易使试件出现翼缘板-端板焊缝断裂;翼 缘板屈曲破坏均出现在波形腹板钢梁试件上,设计 中应考虑使翼缘板的宽厚比沿腹板轴线变化,避免 翼缘板出现局部屈曲。 2)用钢量较大的加劲工字形钢连梁试件IB23-1 的峰值承载力最大,试件CB18-1的次之,试件 CB23-1的最小;在峰值承载力之后,试件IB23-1的 承载力下降速率最大,比CB23-1的大70.1%,比 CB18-1的大40.0%,说明波形钢腹板连梁相对于工 字形钢连梁具有更好的荷载保持能力。

3) 波形钢腹板连梁滞回曲线饱满,跨高比小的 波形钢腹板连梁试件 CB18-1 的耗能能力比试件 IB23-1的高23.18%。

4)当跨高比相同时,波形腹板钢梁试件相对于 工字形钢梁试件延性更大,耗能能力更强;跨高比 较小的波形腹板钢梁试件的延性相对较差,但承载 能力较强,破坏前荷载的保持能力也较强。

参考文献(References):

- [1] 李建中,管仲国.基于性能桥梁抗震设计理论发展[J]. 工程力学,2011,28(增刊2):24-30,53.
 LI Jianzhong, GUAN Zhongguo. Performance-based seismic design for bridges [J]. Engineering Mechanics, 2011,28(sup 2): 24-30,53.
- [2] 吕西林,陈云,毛苑君.结构抗震设计的新概念:可恢复 功能结构[J].同济大学学报(自然科学版),2011,39(7): 941-948. DOI:10.3969/j.issn.0253-374x.2011.07.001. LYU Xilin, CHEN Yun, MAO Yuanjun. New concept of structural seismic design: earthquake resilient structures [J]. Journal of Tongji University (Natural Science), 2011, 39(7): 941-948. DOI: 10.3969/j.issn.0253-374x. 2011.07.001.
- [3] 滕军,马伯涛,李卫华,等.联肢剪力墙连梁阻尼器伪静力试验研究[J].建筑结构学报,2010,31(12):92-100.DOI:10.14006/j.jzjgxb.2010.12.012.
 TENG Jun, MA Botao, LI Weihua, et al. Pseudo-static test for coupling beam damper of coupled shear wall structure [J]. Journal of Building Structures, 2010, 31 (12):92-100.DOI:10.14006/j.jzjgxb.2010.12.012.
- [4] 纪晓东,马琦峰,王彦栋,等.钢连梁可更换消能梁段 抗震性能试验研究[J].建筑结构学报,2014,35(6): 1-11. DOI: 10.14006/j.jzjgxb.2014.06.002.
 JI Xiaodong, MA Qifeng, WANG Yandong, et al. Cyclic tests of replaceable shear links in steel coupling beams[J]. Journal of Building Structures, 2014, 35(6): 1-11. DOI: 10.14006/j.jzjgxb.2014.06.002.
- [5] 李贤,吕恒林,佘立永,等.可拆卸式消能减震钢桁架 连梁抗震性能试验研究[J].建筑结构学报,2013,34 (增刊1):389-394.DOI:10.14006/j.jzjgxb.2013.s1.058. LI Xian, LYU Henglin, SHE Liyong, et al. Experimental study on seismic behavior of replaceable steeltruss coupling beams with energy-dissipating devices
 [J]. Journal of Building Structures, 2013, 34 (sup 1):

389-394. DOI: 10.14006/j.jzjgxb.2013.s1.058.

- [6] EL-BAHEY S, BRUNEAU M. Bridge piers with structural fuses and bi-steel columns, I: experimental testing[J]. Journal of Bridge Engineering, 2012, 17(1): 25-35.
- [7] EL-BAHEY S, BRUNEAU M. Bridge piers with structural fuses and bi-steel columns, II: analytical investigation [J]. Journal of Bridge Engineering, 2012, 17(1): 36-46.
- [8] 孙利民,魏俊.大跨度斜拉桥耗能型辅助墩抗震性能试验研究[J].同济大学学报(自然科学版),2013,41
 (9):1333-1340. DOI: 10.3969/j.issn.0253-374x.2013.0
 9.009.

SUN Limin, WEI Jun. Experimental investigation on seismic performance of energy dissipation subsidiary piers for long-span cable-stayed bridges [J]. Journal of Tongji University (Natural Science), 2013, 41 (9): 1333-1340. DOI: 10.3969/j.issn.0253-374x.2013.09.009.

[9] 谢文,孙利民,魏俊.附有结构"保险丝"构件的桥墩抗 震性能试验研究及其应用[J].中国公路学报,2014,27
(3):59-70. DOI: 10.19721/j. cnki. 1001-7372.2014.03. 009.

XIE Wen, SUN Limin, WEI Jun. Experimental study on seismic performance of bridge piers with structural fuses and its application [J]. China Journal of Highway and Transport, 2014, 27(3): 59-70. DOI: 10.19721/j.cnki. 1001-7372.2014.03.009.

- [10] 孙治国, 华承俊, 司炳君, 等. 设置延性系梁的桥梁双 柱墩抗震能力研究[J]. 桥梁建设, 2015, 45(1): 39-44.
 SUN Zhiguo, HUA Chengjun, SI Bingjun, et al. Study of seismic resistance capacity of double-column bridge pier arranged with ductile tie beam [J]. Bridge Construction, 2015, 45(1): 39-44.
- [11] 石岩, 王东升, 韩建平. 设置 BRB 桥梁排架墩基于位移 抗震设计方法[J]. 土木工程学报, 2017, 50(7): 62-68, 128. DOI: 10.15951/j.tmgcxb.2017.07.007.
 SHI Yan, WANG Dongsheng, HAN Jianping. Displacement-based design method for bridge bents with buckling-restrained braces (BRBs) [J]. China Civil Engineering Journal, 2017, 50(7): 62-68, 128. DOI: 10.15951/j.tmgcxb.2017.07.007.
- [12] 徐秀丽,唐雨生,周叮,等.新型自耗能高墩抗震性能研究[J].中国公路学报,2017,30(12):81-88.DOI:10.19721/j.cnki.1001-7372.2017.12.009.
 XU Xiuli, TANG Yusheng, ZHOU Ding, et al. Research on seismic performance of new self-dissipation

energy high pier [J]. China Journal of Highway and Transport, 2017, 30(12) : 81-88. DOI: 10.19721/j.cnki. 1001-7372.2017.12.009.

[13] 王源, 王天琦, 孙利民, 等. 带消能连梁的矩形空心双 柱式高墩抗震性能试验研究[J]. 工程力学, 2020, 37
(7): 159-167. DOI: 10.6052/j. issn. 1000-4750.2019.08. 0496.

WANG Yuan, WANG Tianqi, SUN Limin, et al.
Experimental investigation on seismic performance of rectangular-hollow double-column tall piers with energy dissipation beams [J]. Engineering Mechanics, 2020, 37 (7): 159-167. DOI: 10.6052/j. issn. 1000-4750.2019.08. 0496.

- [14] HE J, WANG S, LIU Y, et al. The development of composite bridges with corrugated steel webs in China[J]. Proceedings of the Institution of Civil Engineers-Bridge Engineering, 2021, 174(1): 28-44.
- [15] 贺君,刘玉擎,吕展,等.波形钢腹板内衬混凝土组合梁弯、剪性能试验[J].中国公路学报,2017,30(7):94-100,143. DOI:10.19721/j.cnki.1001-7372.2017.07.012.

HE Jun, LIU Yuqing, LYU Zhan, et al. Test on flexural and shearing performance of concrete-encased composite girder with corrugated steel webs [J]. China Journal of Highway and Transport, 2017, 30 (7) : 94-100, 143. DOI: 10.19721/j.cnki.1001-7372.2017.07.012.

- [16] 王威,韩斌,王万志,等.带可更换阻尼器的波形钢板 剪力墙抗震性能试验研究[J].中南大学学报(自然科学版),2020,51(5):1350-1360. DOI: 10.11817/j.issn. 1672-7207.2020.05.019.
 WANG Wei, HAN Bin, WANG Wanzhi, et al. Experimental study of seismic performance of corrugated steel plate shear wall with replaceable damper [J]. Journal of Central South University (Science and Technology), 2020, 51(5): 1350-1360. DOI: 10.11817/
- [17] 贺君, VASDRAVELLIS George, 王思豪, 等. 新型可拆 卸开孔钢管连接件抗剪性能[J]. 中国公路学报, 2018, 31(12): 28-36, 80. DOI: 10.19721/j. cnki. 1001-7372. 2018.12.002.

j.issn.1672-7207.2020.05.019.

HE Jun, VASDRAVELLIS George, WANG Sihao, et al. Shear performance of a novel demountable perforated steel-tube connector [J]. China Journal of Highway and Transport, 2018, 31(12): 28-36, 80. DOI: 10.19721/j. cnki.1001-7372.2018.12.002.

 [18] AISC Board of Directors. Seismic provisions for structural steel buildings: ANSI/AISC 341-10 [S]. Chicago: American Institute of Steel Construction, 2010.

(责任编辑:石月珍;英文编辑:周锐)